Team Instrumentation Final Presentation

REIS RENEWABLE ENERGY & ISLAND SUSTAINABILITY University of Hawai'i at Manoa

Timothy Byers, Cristina Felicitas, and Allie Kim May 7, 2016

Project Background and Motivation

- In 2012, UH Manoa paid \$35 million for their electricity bill.
- Even with energy efficient measure implementation, UH Manoa paid \$34.3 million, which is only 2% decrease
- SCEL is in the process of creating a wireless environmental sensor network to collect data
 - □ To forecast solar irradiation patterns
 - Determine optimal places to install renewable energy sources throughout the UHM campus

Goals of Our Project

- Help students in SCEL to analyze and debug the modules they are creating (weather boxes)
- Create a minimum viable product that logs the device under testing (DUT) voltage and current in real time and export the data as a .csv file

How we accomplished our goal

Specifications of our project, method of approach, major problems and solutions, bill of materials

Device Specifications

- Collect current and voltage readings from a device under testing (DUT)
- Transmit data to a computer in real time
- Display data in a graph format after collection
- Export data as a .csv file
- \circ DUT must have a maximum voltage of 10 V and 3.2 A

Task Assignments

Cristina Felicitas Hardware
PCB design and fabrication
Testing prototypes

Timothy Byers ○ Firmware ○ Integration

Allie Kim

Software

Graphical User Interface

Integration

Block Diagram

Software

- Python-based GUI
- Libraries used:
 - PyQt/Designer
 - Matplotlib
 - □ PySerial

Screenshots

Project Settings		
n/Desktop/GUIDev/Old Versions Select Destination Folder	•••	MainWindow
Enter name of .csv file:	Voltage (V)	0 556078281
GUITest .csv		0.8 0.7 0.7
Sample Rate (Hz):		0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 5 0.3 5 0.3 5 0.3 5 9.2 5 2 487 0.3 5 9.2 5 2 487 0.3 5 9.2 5 2 487 0.3 5 9.2 5 2 487 0.3 5 9.2 5 2 4 87 0.3 5 9.2 5 10 4 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 5 9.3 7 10 8.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9
1 Hz	8.759	0.4 - 0.021575237 0.4 - 0.758576172
Enter log duration (s):		0.3 - 0.2 - 1
10 s		
Select current or voltage reading:		0 1 2 3 4 5 6 7 8 9
O Current O Voltage	Start	
Cancel OK		

Problems and Solutions

Problems

- 1. INA219 didn't provide the right voltage reading
- 2. Traces on PCB were printed on the top layer/Didn't want to solder on the top of the board
- 3. Sending data from Arduino to GUI

Solutions

- Created a voltage divider in circuit to get the voltage
- 2. Moved traces to bottom layer in Eagle
- 3. Simple function to read out from Arduino

Bill of Materials

Part Description	Part Name	Vendor	Product ID/#	Quantity	UnitCost
Wall Outlet Connector	DC Barrel Power Jack/Connector	Sparkfun	119	1	\$1.25
Voltage Regulator	Voltage Regulator - 5V	Sparkfun	107	1	\$0.95
Wall Outlet	Wall Adapter Power Supply - 9V DC 650 mA	Sparkfun	298	1	\$5.95
ON/OFF Switch	SPDT Slide Switch	Sparkfun	9609	1	\$0.75
Socket for Microprocessor	DIP Sockets Solder Tail - 28 - Pin 0.3"	Sparkfun	7942	1	\$0.95
Microprocessor	ATMega 328 P - Arduino Bootloader Programmed Chip	A dafruit	123	1	\$5.95
USB Cable	USB Mini-B Cable - 6"	Sparkfun	13243	1	\$1.95
FTDI	FTDI Friend + extras -v1.0	A dafruit	284	1	\$14.75
Current Sensor	INA219 High Side DC Current Sensor Breakout	A dafruit	904	1	\$9.95
Cables for Testing	Alligator Clip with Pigtail (4 Pack)	Sparkfun	1319	1	\$2.95
Misc. Parts	Clock, capacitors, female headers, resistors, LEDs	Sparkfun		1	\$5.00
				Total Cost	\$50.40

Total Cost: \$50.40

Final Status

- Read accurate values from DUT with 1% error
- Printed circuit board fabricated and working properly
- Communication from CVL to computer
- GUI working independently
- \circ Will be debugging the product within the next week
- Will create a video to demonstrate working product

Remaining Tasks

Debugging serial communications

Debugging firmware

 \circ Overall integration and testing

Future Improvements

- - \circ Wireless communication between CVL and computer
 - Live plotting of data
 - Gather and log other parameters from DUT
 - Further customization of GUI settings
 - Run basic analysis scripts on data sets
 - Allow users to tag/comment data
 - Power-saving features
 - Reduce cost of device

THANKS!

Any questions or suggestions?

Acknowledgements

Special thanks to all the people who has helped us with this project:

- Faculty Advisor: Dr. Anthony Kuh
- EE 626 Professor: Dr. David Garmire
- SCEL Leadership Team
 - **oTyrin Besas**
 - Zachary Dorman
 - **oTryston Fagarang**
 - Kenny Luong
 - Christie Obatake
 - oDemosthenes Villa
- SCEL student members and mentors
- EE Ron Ho Fund
- UHM College of Engineering
- Electrical Engineering Department