Cranberry Team Experimental Weatherbox Platform – Generation 3

Smart Campus Energy Lab (SCEL) Renewable Energy & Island Sustainability (REIS) University of Hawai'i at Mānoa Department of Electrical Engineering EE496 Final Presentation December 5th, 2015 *Advisor:* Dr. Anthony Kuh

Brandon S. Amano

Kim Pee P. Castro

Presentation Overview

Cranberry - Weatherbox Platform

Weather Sensor Module - Measures barometric pressure, humidity, temperature, and luminosity.

- Motivation and Goals
- Overall Hardware Block Diagram
- Team Approach and Procedure
- Hardware Module and EAGLE Design Status
- Bill of Materials (BOM) and Power Budget
- Remaining Tasks and End-Goals

Motivation and Goals

Motivation

- Understand more about renewable energy related fields
- Apply engineering and design skills and use of relevant tools

Goals

- Update Cranberry Documentation
- Version 1: Troubleshoot problems with original design to produce an operational board
- Version 2: Improve upon Cranberry board layout and implement personal design preferences

Hardware Block Diagram

Testing Procedure

Incremental Approach – For each module:

- Verify schematics from datasheet to EAGLE layout.
- Solder on appropriate components.
- Perform continuity checks.
- Ensure proper PWR and GND connections.
- Test the validity of I/O values.

Add next module and repeat testing / debugging steps.

Cranberry Board V1.0 Updates

Power Module – Charging Chip and V. Regs⁶

- Mixture of discrete component packages (0805 vs. 0603)
 - ✓ Standardized all to 0805 packages

6

- Incorrect sensor switch pin connections
 - ✓ Bypassed IC so sensor board is constantly powered
- Incorrect resistors for *Battery Temp. Monitor* THERM pin
 - ✓ Recalculated correct values using datasheet
- Discrepancy between charging rate and PROG1 resistor
 - ✓ Compared boards with 500mA charging rate (PROG1 = $2k\Omega$)

Power

CRANBERRY

Sensor IC Switch

Voltage Regulators

Verification of Power Module

7

Solar Panel

 V_{Load}

	Parameter	Cranberry #1	Cranberry #2	Dragon Fruit	Adafruit Breakout	V _{Source}	
<u>8</u> _	V _{Source}	6.00V	6.00V	6.00V	6.00V	*	
atte	V _{Batt}	4.06V	4.32V	4.34V	4.30V	Charging	g Chip
ut B out]	V _{Load}	3.98V	5.88V	5.88V	6.01V		
litho	V _{3.3,Main}	3.569V	3.292V	3.304V		V _{Batt}	V
3-	V _{3.3,Xbee}	3.569V					
	V _{Source}	6.00V	5.68V	5.67V	5.69V	+3./V	
ry ad	I _{Source}	0.01A	0.49A	0.49A	0.50A	Battery	
satte it Lo	V _{Batt}	3.74V	3.82V	3.837V	3.81V		
ith E thou	V _{Load}	4.16V	5.37V	5.36V	5.68V		
Wi Wi	V _{3.3,Main}	3.298V	3.294V	3.310V		+3.3V XB	ee Reg
	V _{3.3,Xbee}	3.290V					
	V _{Source}	6.01V	5.69V	5.66V			Ļ
g	I _{Source}	0.00A	0.49A	0.49A		13 3V Ma	in Pa
tery Loa	V _{Batt}	3.74V	3.83V	3.83V		$\pm 3.5 \text{ V IVIU}$	in Kez
LED	V _{Load}	5.84V	5.37V	5.35V		V22 Main	
With 7ith J	V _{3.3,Main}	3.299V	3.294V	3.307V		• 3.3,Muin	
F A	I _{3.3,Main,LED}	1.51mA	1.50mA	1.51mA		LED L	oad
	V _{3.3,Xbee}	3.293V					

Cranberry Board V1.0 Updates

MCU Module – ATMEGA328P

- Difficulty soldering MCU due to bottom GND pad
 - ✓ Solder Paste and Hot-Air Rework Station
- Incorrect use of coupling capacitor for RESET signal
 - ✓ Bridged with wire and removed from schematic
- Unused Jumper/Header for MCU Switch
 - ✓ Bridged so MCU is constantly powered

Cranberry Board V1.0 Updates

Sensor Module – Barometer, Humidity, Pyranometer

- Incorrect decoupling capacitor values
 - ✓ Changed to match datasheet suggested values
- Incorrect non-inverting op-amp for Pyranometer
 - ✓ Bypassed using jumper pin
 - ✓ Uses Apogee SP-215 instead of Apogee SP-110

EAGLE Library and Schematic

EAGLE Part Library

All main components completed

EAGLE Schematic

- Incrementally implemented each module
- Schematic redone with standard conventions, including proper labeling and documentation
- Corrections made to mirror changes to V1.0 board

EAGLE Design Obstacles

Missing land patterns on datasheets

Bill of Materials (BOM)

Resembles SCEL Inventory Sheet

- Contains quantity, part description, package, mounting type, part value, manufacturer, distributor, and unit cost.
- References the EAGLE name and description.

Includes:

- IC Components (V.Regs, MCU, Sensors)
- Passive Components (Resistors, Capacitors, Diodes)

Cranberry Cost: ~\$303

(Excluding PCB, Housing, Xbee, and Batteries)

- Misc. Components (Solar Panel, Battery, Switches)
- Connectors

 (JST, Pin Headers, Barrel)

Cranberry V1.0 - Power Budget R1.0

Average Component Statistics

XBee:

49.57 mW

- Idle: 99.9891%
- Transmit: 0.0109%
- Barometer: 0.02 mW
- **Humidity:** 1.07 mW
- **3.3V V. Reg. (2x):** 0.58 mW
- **ATMEGA MCU:** 3.96 mW
- Irradiance ADC: 0.26 mW
- Irradiance Op-Amp: 1.32 mW

Total System Consumption

- Average Power: 57.36 mW
- Max Power: 75.99 mW

Li-Po Battery Statistics

- 6600 mAh, 3.7V, 19536 mWh
- 15,600 mAh, 3.7V, 46176 mWh
- Useable Energy: 80.0%

Run-Time Statistics

• 6600 mAh:

(257.1 Hrs) 8 Days, 13.67 Hours

• 15,600 mAh:

(486.14 Hrs) 20 Days, 6.14 Hours

Final Status of Project

Power Module

- Proper voltages and currents obtained
- Board is powered and Li-Po battery charges

MCU Module

- ATMEGA can be detected and programmed
- Tested for 1 Hz Square Wave output

Sensor and XBee Modules

Components fully soldered and ready to verify

Outstanding Tasks and Problems

Cranberry Board (V1.0)

- Program MCU to verify proper sensor values.
- Verify proper XBee signals and TX/RX capabilities.

EAGLE and PCB Design (V2.0)

Redesign new board with updated schematic/board changes and design preferences.

Main Deliverables (Work In Progress):

A working *Cranberry Board (V1.0)* with proper documentation and a redesign for *Cranberry Board (V2.0)*.

Future Improvements (EE499)

Cranberry Board

- More accurate / measured power budget
- Universal / standardized housing for all generations

EAGLE and PCB Design (V2.0)

- Additional functionality, status signals, and sensors
- More efficient layout and easily solderable packages
- Correct MCU controlled / mechanical power switches
- Programming and debugging ports for firmware / verification teams

Inter-Team Collaboration

Apple Team

- Power Budget Comparisons
- Changes to circuit schematic / layout

XBee Team

- XBee transmit/receive signals/testing
- Pin connections and soldering practice

Dragon Fruit Team

- Power Budget and EAGLE Layout
- Component selection, debugging, and soldering

Firmware and Verification Team

- Sensor readings and power budget comparison
- Pin-out connections for programming and debugging

Acknowledgements

Thank you to the following...

- Advisor: Dr. Anthony Kuh
- Leadership Team: Christie Obatake, Kenny Luong, Zachary Dorman
- Mentors: Jon Liang, Jason Tanabe
- **REIS Team Members:** Apple, Dragonfruit, Firmware, Verification, Networking and Server, Forecasting, and Wind Sensor

Any Questions?

Smart Campus Energy Lab (SCEL) Renewable Energy & Island Sustainability (REIS) University of Hawai'i at Mānoa Department of Electrical Engineering

Bill of Materials (BOM)

	Cranberry Bill of Materials (V1) (BOM)													
Part #	Quantity	EAGLE Name	EAGLE Description	Part Type	Part Description	Mounting Type	e Part Package	Part Value	Manufacturer	Manufacturer P/N	Distributor	Distributor P/N	Unit Cost	Sub-Cost
1 2	2	VREG3.3_MAIN; VREG3.3_XBEE	Main Board and XBEE V.Regs	V. Regulator	IC REG LDO 3.3V 0.5A SOT23-5	SMD	SOT23-5	3.3V	Microchip Tech.	MIC5219-3.3YM5-TR	Digi-Key	576-1281-1-ND	\$ 0.89	\$ 1.78 \$ -
3	1	C5	ATMEGA RESET Cap	Capacitor	CAP CER 10000PF 50V X7R 0805	SMD	0805	10nF	Yageo	CC0805KRX7R9BB103	Digi-Key	311-1136-1-ND	\$ 0.10	\$ 0.10
4	1	C3	IC Switch Decoupling Cap	Capacitor	CAP CER 1UF 10V X7R 0805	SMD	0805	1uF	Yageo	CC0805KKX7R6BB105	Digi-Key	311-1458-1-ND	\$ 0.10	\$ 0.10
5	2	C4, C6	V. Reg Decoupling Caps	Capacitor	CAP CER 470PF 100V X7R 0805	SMD	0805	470pF	Samsung Electro-Mech.	CL21B471KCANNNC	Digi-Key	1276-2516-1-ND	\$ 0.12	\$ 0.24
6	2	C2, C12	V.Reg Polarized Decoupling Caps	Capacitor	CAP TANT 2.2UF 6.3V 20% 0805	SMD	0805	2.2uF	Rohm Semiconductor	TCP0J225M8R	Digi-Key	511-1439-6-ND	\$ 0.69	\$ 1.38
7	1	C1	ATMEGA Decoupling Cap	Capacitor	CAP CER 0.1UF 50V Y5V 0805	SMD	0805	100nF	Yageo	CC0805ZRY5V9BB104	Digi-Key	311-1361-1-ND	\$ 0.10	S 0.10
8	2	C7, C8	Crystal Oscillator Decoupling Caps	Capacitor	CAP CER 18PF 50V NP0 0805	SMD	0805	18pF	Johanson Dielectrics	500R15N180JV4T	Digi-Key	709-1171-1-ND	\$ 0.10	\$ 0.20
9	1	C10	Solar Charger Decoupling Cap	Capacitor	CAP ALUM 4700UF 20% 10V RADIAL	PTH	0.197" (5.00mm)	4700uF	Panasonic Electo-Comp.	ECA-1AM472	Digi-Key	P5130-ND	\$ 0.90	\$ 0.90
10	1	C11	Solar Charger Decoupling Cap	Capacitor	CAP CER 10UF 20V X6S 0805	SMD	0805	10uF	Murata Electronics NA	GRM21BC81D106KE51L	Digi-Key	490-10500-6-ND	\$ 0.24	\$ 0.24
11	1	C1	ATMEGA Decoupling Cap	Capacitor	CAP CER 0.1UF 50V Y5V 0805	SMD	0805	0.1uF	Yageo	CC0805ZRY5V9BB104	Digi-Key	311-1361-1-ND	\$ 0.10	\$ 0.10
	1	C9	Humidity Sensor Decoupling Cap	Capacitor	CAP CER 0.1UF 50V Y5V 0805	SMD	0805	0.1uF					\$ 0.10	\$ 0.10
	2	C14, C15	Pressure Sensor Decoupling Cap	Capacitor	CAP CER 0.1UF 50V Y5V 0805	SMD	0805	0.1uF					\$ 0.10	\$ 0.20
	1	C16	Solar Irradiance Decoupling Cap	Capacitor	CAP CER 0.1UF 50V Y5V 0805	SMD	0805	0.1uF					\$ 0.10	\$ 0.10
12	1	C13	Humidity Sensor Decoupling Cap	Capacitor	CAP CER 0.22UF 50V X7R 0805	SMD	0805	0.22uF	Yemet	C0805C224K5RACTU	Digi-Key	399-3491-1-ND	\$ 0.14	\$ 0.14
13														
14	1	IC1	Solar Panel / Battery Charging Chip	IC Chip	IC USB/AC BATT CHRGR W/PPM 20QFN	SMD	20-VFQFN		Microchip Tech.	MCP73871-2CAI/ML	Digi-Key	MCP73871-2CAI/ML-ND	\$ 1.79	\$ 1.79
15	1	ADS1115_ADC	Solar Irradiance ADC	IC Chip	IC ADC 16-BIT I2C PROGBL 10-MSOP	SMD	10-VSSOP		Texas Instruments	ADS1115IDGST	Digi-Key	296-24934-1-ND	\$ 6.51	\$ 6.51
16	1	MIC7300_OPAMP	Solar Irradiance Op-Amp	IC Chip	IC OPAMP GP 370KHZ RRO SOT23-5	SMD	SOT23-5		Microchip Tech.	MIC7300YM5-TR	Digi-Key	576-1319-1-ND	\$ 0.28	\$ 0.28
17														
18	1	BAROMETER	Barometer / Pressure Sensor	IC Sensor	IC BAROMETER I2C DGTL MINI 8-LGA	SMD	8-TLGA		Freescale Semiconductor	MPL115A2T1	Digi-Key	MPL115A2T1CT-ND	\$ 5.10	\$ 5.10
19	0	HUMIDITY	Humidity Sensor (Old)	IC Sensor	SENSOR HUMIDITY SPI 4.5% SMD	SMD	SOIC-8		Honeywell Sensing	HIH6031-000-001	Digi-Key	HIH6031-000-001TR-ND		S -
20	1	HUMIDITY	Humidity Sensor (New)	IC Sensor	SENSOR HUMIDITY/TEMP I2C 4% SMD	SMD	SOIC-8		Honeywell Sensing	HIH6131-021-001	Digi-Key	480-3652-1-ND	\$ 15.13	\$ 15.13
21	1	IRRADIANCE_110	Solar Irradiance (Old)	IC Sensor	SELF-POWERED PYRANOMETER		3-Pin Wire		Apogee Instruments	SP-110	Apogee	SP-110	\$ 195.00	\$ 195.00
22	0	IRRADIANCE_215	Solar Irradiance (New)	IC Sensor	SELF-POWERED PYRANOMETER		3-Pin Wire		Apogee Instruments	SP-215	Apogee	SP-215	\$ 235.00	S -
23			C	Control	Country 1 0 000 HTs 10 country 10 r F 00 Ohm Thomash Hash HOUD TH	DTU	TICHOLIS	0.003 677-	TNO Com	OD 0 0000 TELLD	Dist Varia	007 1000 NTD	0.10	C 0.40
24	1	Q2	Crystal Oscillator	Crystal	Crystal 8.00MHz Toppm TspF 80 Onm Through Hole HC49/US	PIH	HC49/US	8.00MHz	TAC Corp.	9B-8.000IVIEEJ-B	Digi-Key	887-1255-ND	5 0.48	5 0.48
25	1	02	ATMEGA MCU	MCU	IC MCU 8BIT 52KB FLASH 52QFN	SIMD	52-VQFIN		Atmei	ATMEGA528P-MU	Digi-Key	ATMEGA328P-MU-ND	\$ 5.38	\$ 5.38
20	2	D1 D1		D 1.4	DEG ON DE LETTE OF DE LEGE A MONT ANDE	(1) (D)	0005	1.71			D:	DA CORDOCATI AND	0.010	3 -
27	2	K1, K4	Solar Irradiance Op-Amp Feedback	Resistor	RES SNID 4.7K OHM 5% 1/8W 0805	SIMD	0805	4./K	Stackpole Electronics Inc.	RMCF0803J14K/0	Digi-Key	KWCF0805314K/0C1-ND	5 0.10	5 0.20
27	2	R2, R3	Humidity Pull-Op	Resistor	RES SMD 4./K OHN 3% 1/8W 0803	SMD	0805	4./K	0. 1 1 T1 T	DA COTOROS ITANICO	D: : V	DA CORONA ET LOVOCE AND	\$ 0.10	\$ 0.20
28	2	KJ, KIZ	MCU Pull-Up; Solar Charger Resistor	Resistor	RES SMD TOK OHM 5% 1/8W 0805	SMD	0805	106	Stackpole Electronics Inc.	KINICF0805J110K0	Digi-Key	RIVICF0805J110K0C1-ND	\$ 0.10	5 0.20
29	1	K0	Solar Charger Resistor	Resistor	RES SMD 270K OHM 5% 1/8W 0805	SMD	0805	270k	Panasonic Electo-Comp.	ERJ-0GE 1J2/4V	Digi-Key	P2/0KACI-ND	5 0.10	5 0.10
30	2	K8, K10	Solar Charger Resistors	Resistor	RES SMD TOOK OHM 5% 1/8W 0805	SMD	0805	100k	Panasonic Electo-Comp.	ERJ-6GEYJ104V	Digi-Key	PI00KACI-ND	\$ 0.10	\$ 0.20
51	1	Ry	Solar Charger Resistor	Resistor	RES SMD 2K OHM 5% 1/8W 0805	SMD	0805	2k	Panasonic Electo-Comp.	ERJ-6GEYJ202V	Digi-Key	P2.0KAC1-ND	\$ 0.10	5 0.10
52	1	KII B12	Solar Charger Resistor	Resistor	RES SMD IN OHM 3% 1/8W 0803	SMD	0805	1K	Panasonic Electo-Comp.	ERJ-DGEYJ102V	Digi-Key	PLOKACI-ND DISOVACT ND	\$ 0.10	5 0.10
33	1	K13	Solar Charger Resistor	Resistor	KES SMID 150K OHM 5% 1/8 W 0805	SMD	0805	150k	Panasonic Electo-Comp.	ERJ-0GEYJ154V	Digi-Key	PIDUKACI-ND	\$ 0.10	5 0.10
35	1	PANEL	Solar Papel 6V 5 6W	Solar Panel	HUGE 6V 5 6W SOLAR PANEL	DC JACK	3 8mm OD		Adafmit	1525	Adafnuit	1525	\$ 59.00	\$ 59.00
36	1	DI	Solar Charger Zener Diode	Diode	DIODE SCHOTTKY 20V 500MA SOD123	SMD	SOD-123		ON Semiconductor	MBR0520LT3G	Digi-Key	MBR0520LT3GOSCT-ND	\$ 0.33	\$ 0.33
37	-													
38	1	BATT	Li-Po Battery JST Cable Connector	Connector	CONN HEADER PH SIDE 2POS 2MM SMD	SMD	0.079" (2.00mm)	2-Pin	JST Sales America Inc.	S2B-PH-SM4-TB(LF)(SN)	Digi-Key	455-1749-1-ND	\$ 0.56	\$ 0.56
				-										4 a a a a a a a a a a a a a a a a a a a

Cranberry's (V1.0) Power Budget

		(Cranberry Boar	'd (V1.0) Pov	wer Budget				Cranberry Notes and Documentation			
3.3 Volt Module		Datasheet Valu	es	Calculated Values XBee				cteristics	Revision: R1.0			
Device Name	Idle (mA)	Typical Current Draw (mA)	Max Current Draw (mA)	Avg. Current Draw (mA)	Avg. Power Consumed (mW)	Max Power Consumed (mW)	Transmit Time	Idle Time	* Current Draw (mA) and Avg. Power (mW) calculations			
XBee Transmit	15.00	205.00	220.00	15.02	49.57	49.57	0.0109%	99.9891%	assume sensors (barometer, etc.) are polling 1/2 of time.			
XBee Recieve				0.00	0.00	0.00			* V. Reg current values are taken from datasheet values for			
Barometer	0.01	0.01	0.01	0.01	0.02	0.02			loads of Iout = 50mA, because total average system current			
Humidity (HIH6031)	0.00	0.65	1.00	0.33	1.07	3.30			draw is approximately 57mA for the 3.3V regulator.			
V. Reg 3.3V (Main)		0.35	0.90	0.18	0.58	2.97			* Assume XBee leakage currents are negligible (μA << mA).			
V. Reg 3.3V (Xbee)		0.35	0.90	0.18	0.58	2.97			* Assume XBee only operates in transmit/idle mode (i.e. does			
Atmega 328P MCU	0.70	1.70	2.70	1.20	3.96	8.91			not receive data from the server).			
Irradiance ADC	0.01	0.15	0.30	0.08	0.26	0.99			* For XBee Transmit/Idle Time, use given parameters: 82bytes			
Irradiance Op Amp		0.80	2.20	0.40	1.32	7.26			(Transmit Rate = 250 kbps), sent to the server every 3 seconds.			
Total Current Draw (mA)	15.72	209.01	228.01	17.38	57.36	75.99						
Supply Voltage (V)	3.30	3.30	3.30	3.30	3.30	3.30						
Total Power Consumption (mW)	51.86	689.72	752.42	57.36	57.36	75.99						
·												
1												
	Rechargeable	e Li-Po Batteries (3.7V)										
Battery	Voltage (V)	Current (mAH)	Useable Energy (%)									
6600 mAH LI-ION 3.7V	3.7	6600	80.0%									
15600 mAH Li-ion 3.7V	3.7	15600	80.0%									
	-		Estimated Batt	ery Running Time								
Battery	Energy (mWH)	V. Reg Efficiency (%)	Max Power Consuption (mW)	Max (Hrs)	Max w/ V. Reg Efficiency (Hrs)	Max w/ V. Reg Efficiency (D	ays, Hrs)					
6600 mAH LI-ION 3. /V	19536	80.0%	/5.99	257.1	205.67	8 Days, 13.67 Hours	5					
15600 mAH Li-ion 3.7V	46176	80.0%	75.99	607.7	486.14	20 Days, 6.14 Hours	5					

20