
Bootloading Documentation

Supplies:
● Arduino Uno

● 1x Micro USB cable

● 1x USB Type B cable

● Bare arduino

○ 2x Capacitors (22 pF)

○ Crystal Clock (8 MHz or 16 MHz)

○ 1x Resistor (100 Ω)

○ 1x Push button

○ Microcontroller of Choice

○ Misc wires

Software:
● Arduino IDE

○ ArduinoISP file

● Microcontroller library (Mighty)

Procedure:
In order to program your microcontroller, you will need to burn the bootloader into it.

Fortunately, we can use the Arduino Uno as an ISP (In-System Programmer) to burn

bootloaders. First, you will want to construct your bare arduino with your microcontroller of

choice. You can follow the instructions on the Arduino website to construct your bare arduino

through this link.

Once you have finished setting up your bare arduino, you’ll want to connect the Arduino

Uno so that it can be configured to program as an ISP. We will be using the SPI (Serial

Peripheral Interface) protocol as compared to I2C protocol. Their differences can be found

through this link. A schematic for the 1284 microcontroller configuration can be found in Figure 1

below:

https://www.arduino.cc/en/main/standalone
https://aticleworld.com/difference-between-i2c-and-spi/

Figure 1: Connecting an Arduino Uno to an ATMega1284 for ISP programming

You may be using a different microcontroller than the ATMega1284, in which the pins

will be very different. In that case, you will want to follow the following table for connecting the

Uno to your bare arduino:

Microcontroller Pin Arduino Uno Pin

RST 10

MOSI 11

MISO 12

SCK 13

Figure 2: Pin configurations for connecting a microcontroller to the Arduino Uno for ISP
Programming

Now that the Uno is configured for ISP programming, you can open up the Arduino IDE

software. You will want to open the ArduinoISP file which can be found under File → Examples

→ 11.ArduinoISP. Make sure that the appropriate core is installed for your microcontroller. You

can find the cores from this github repository or you can install it through this tutorial. Once it is

https://github.com/MCUdude/MightyCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/

installed properly, you can check to see if it is installed by checking under Tools → Boards. If

you see a submenu labelled MightyCore then you have installed it correctly.

Before we can burn the bootloader, make sure that the Uno is plugged into the computer

with Arduino IDE running. There are two main parts to configuring the Uno. In this first part, we

have to upload the ArduinoISP file to the Uno. To do this, select the “Arduino / Genuino Uno”

under Tools → Boards. Change the port to match the one that the Uno is connected to under

Tools → Ports. We will be using the “AVR mkII” programmer for this first part, which can be

found under Tools → Programmer. Now you can upload the ArduinoISP code to the Uno.

In this next part, we will be burning the bootloader onto the microcontroller. Change the

board to the microcontroller that you are using under Tools → Boards. We will be using the

same port from the first part. Change the programmer to “Arduino as ISP”. Now we can burn the

bootloader by going under Tools and selecting “Burn Bootloader”. After this step, the Uno

should begin burning the bootloader onto your microcontroller. You can test if your board is

bootloaded properly by trying to upload new code through an FTDI or by pressing the reset

button and checking if the LED flashes. By default, every bootloader should have a reset

functionality built into it, and will usually be port 0 or 1.

TLDR:
1. Build bare arduino

2. Connect Arduino Uno to bare arduino using table in Figure 2

3. Install appropriate microcontroller core

4. Open ArduinoISP file under File → Examples → 11.ArduinoISP

5. Under Tools make sure the following settings are selected:

a. Boards → “Arduino / Genuino Uno”

b. Port → “COM# (Arduino / Genuino Uno)”

c. Programmer → “AVR mkII”

6. Upload code

7. Change the settings under Tools again to the following:

a. Boards → “(microcontroller core here)”

b. Port → “COM# (Arduino / Genuino Uno)”

c. Programmer → “Arduino as ISP”

8. Burn the bootloader under Tools → Burn Bootloader

References:
Bootloading tutorial:

● http://www.technoblogy.com/show?19OV#bootloader

I2C and SPI Differences:

● https://aticleworld.com/difference-between-i2c-and-spi/

MightyCore Github:

● https://github.com/MCUdude/MightyCore

MightyCore Installation Tutorial:

● https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-

atmega16-atmega32-atmega324-and-more/

Standard, Bobuino, and Sanguino Pinouts:

● https://github.com/MCUdude/MightyCore#pinout

Further Readings:
ISP’s:

● https://www.quora.com/What-is-in-system-programming

● https://en.wikipedia.org/wiki/In-system_programming

Communication Protocols (I2C, SPI, UART):

● https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocol

s-and-uses/

● https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html

http://www.technoblogy.com/show?19OV#bootloader
https://aticleworld.com/difference-between-i2c-and-spi/
https://github.com/MCUdude/MightyCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://github.com/MCUdude/MightyCore#pinout
https://www.quora.com/What-is-in-system-programming
https://en.wikipedia.org/wiki/In-system_programming
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html

