
Final Paper for Spring 2021 EE396 2nd

Generation Relay Node: Team Bumblebee

Authors: Brian Griswold, Yin Aye, Thant Thiri

Department of Electrical Engineering

University of Hawaii at Manoa

Renewable Energy and Island Sustainability Program

Smart Campus Energy Lab

7 May, 2021

Abstract: ‘Bumblebee’ is Smart Campus Energy Lab’s (SCEL) 2nd generation communications

module designed to relay meteorological data collected from weather boxes on Holmes Hall.

Meteorological data that is collected from the weatherboxes on top of Holmes Hall and is sent

wirelessly using an XBee device inside the weatherbox to the gateway in Holmes Hall. Due to

the limited range of the weatherbox sensor node, ‘Bumblebee’ was developed to extend the range

of the sensor node network.

Table of Contents

Introduction 2

Relay Node: Bumblebee Overview 3-14

Block Diagram 3-4

Design: Schematic and PCB Layout 4-9

Bare Arduino Board 9-10

Bootloading 10

Packet Relay Testing 11-12

Range (Field) Testing 12-18

Problems and Solutions 18-19

Future Work 19

Conclusion 19-20

References 21

1

I. Introduction

In 2008, the state of Hawaii and the Department of Energy decided to collaborate to

reduce the dependence on imported fossil fuels. Due to Hawaii being the most fossil

fuel-dependent state in the United States, the goal of the Hawaii Clean Energy Initiative is to

become 100 percent energy clean by 2045[1]. Smart Campus Energy Lab (SCEL) was made an

effort under the University of Hawaii’s Renewable Energy and Island Sustainability (REIS)

program to support the goals of the Hawaii Clean Energy Initiative. The REIS program’s goal is

to help UH Manoa to run on its own microgrid that is powered by 100 percent renewable energy.

SCEL’s goal is to help make this microgrid by designing, building, and deploying

“weather boxes” that can collect and send meteorological data such as temperature, humidity,

and solar irradiance. These weather boxes should be designed and developed to be low-cost so

that they may be mass-produced. Meteorological data that is gathered from these weather boxes

will provide help in planning for future renewable energy installations and data for forecasting

algorithms[2].

Bumblebee does not include any sensors, so it does not collect any data. The ideal

location for Bumblebee boxes would be between distant sensors and the lab gateway. Bumblebee

is based on the third generation of sensor nodes, Cranberry, and uses many of the same

components including the Atmega328P microcontroller, the Xbee Pro S2C, and is powered by a

solar panel and rechargeable battery. The Bumblebee box has a simplified circuit and its own

PCB design and housing. Our team also does range testing and networking with Xbees.

2

II. Relay Node: Bumblebee Overview

Block Diagrams

The figures shown below are the overall designs of Bumblebee’s power and

communication distribution. Starting with Figure 1, this shows us our power system. The power

block diagram describes the functionality of each of the hardware components that are being

connected. To help power the Bumblebee relay node, a charging circuit and solar panel are

incorporated into the board. Based on Figure 1, we can also see that we only have one 3.3V

voltage regulator that is being used to supply enough current to the circuit. This is because there

are no other sensors being used or are being connected to bumblebee. A 5V boost converter was

implemented last semester to have the Atmega run at 5V with a 16MHz clock. Note that the 5V

regulator will be applied to both version 4.0 and 4.1 PCB boards.

Figure 1: Power Block Diagram

3

In Figure 2, this shows how the different sensor nodes will communicate wirelessly. The

signal block diagram illustrates the basic path of the data travelling from the sensor node and

eventually to the gateway computer. We currently use the Xbee S2C Pro instead of the S2B. This

block diagram shows that from the weatherboxes that collect data for its sensors, it will construct

a data packet and send it to the relay node. Bumblebee will receive that data and send it to the

gateway Xbee to be sent to the lab gateway. Overall, this diagram illustrates that data has to go

through multiple Bumblebee nodes in order for the lab gateway to receive a packet.

Figure 2: Signal Block Diagram

Design: Schematic and PCB Layout

Version 4.0 had a 5V boost converter implemented in the design to supply 5 volts to the

ATmega328P and the 16MHz crystal. This addition was with the intent of increasing the

reliability of bootloading and range testing. This semester, the team successfully boot loaded and

tested with 3.3 volts and 5.0 volts supplied to the Atmega328P on the version 4.0 board. This was

done to see if the added complexity of the 5-volt boost converter improved the reliability of boot

loading and more importantly transmission signal strength. More than just increasing the build

time, the 5-volt boost converter physically decreased the robustness of the 4.0 design. This

proved to carry over to the version 4.1 design. There is still a question as to if the 5-volt boost

4

regulator is necessary. Bootloading and signal strength appeared to be the same if not better with

3.3 volts supplied to the ATemga328P.

However, since the end product will rely on battery voltage overnight or in inclement

weather conditions the boost regulator was decided to be kept since it will supply 5 volts even

with a battery drained to as low as 0.7 volts. The hope is this improves the robustness of the mesh

network. To be sure a test would need to be performed to see how long only battery voltage will

operate an XBee; versus how long an XBee will operate with a boosted battery voltage. The

boost converter itself consumes some energy to increase the output voltage although it is

specifically designed for high efficiency at greater than or equal to 90%.

When the move to the 5 volt Texas Instruments boosts converter part number

TPS61222DCKR was made, the PCB layout did not connect the feedback of the boost converter

to voltage out. This proved to be a fatal flaw for the version 4.1 board. Two versions of the

regulator exist. A fixed version, which is the boost converter being used; and an externally

adjustable regulator. The externally adjustable with R1 and R2 do not need to have FB connected

to the regulator’s output voltage. The fixed regulator version only mentions the FB needing to

have Voltage out connected in a footnote.

We bridged a small section of 0.1mm magnet wire to supply the output voltage to the

regulator FB and were able to get 4.7 Volts out with this temporary solution. The team conferred

with our 323 circuits professor and stray capacitance from the relatively large magnet wire,

comparatively speaking in regards to a PCB trace, and the PCB board design was noted as the

most likely issue for the lack of achieving the full 5-volt boost voltage per the design

specifications.

5

Figure 3: Schematic Layout v4.1

Moving forward FB pin 2 of the TPS61222DCKR needs to be shorted to pin 4 of voltage

out. Also, the capacitors are to be moved closer to the input and outputs of the voltage regulator

and inductor to minimize the voltage spiking of the inductor propagating through the PCB.

Where it is a common design method to have each side of a PCB be a solid copper plate and have

one side be positive voltage and the other ground; this is not a good design method for

microcontroller circuits as the goal is to isolate circuits from the effects of other components.

Version 4.0 manufacturing design actually isolated components better however the board

manufacturing process did not produce strong pad anchoring to the board surface. The pads

6

failed at times while attempting to solder the SMD components. A new version will have only

the necessary traces, a better manufacturer will be sourced.

Figure 4: PCB Layout V4.1

A stable power supply with low noise, voltage ripple, is crucial for strong transmission

signals. All the preceding design aspects will contribute to the communication signal strength.

Power delivery to the Xbee module can further improve this by separating out the capacitors in

the voltage supply line to the Xbee module. The capacitors should be placed with the lowest

capacitance closest to the Xbee module input voltage and increase in the order of capacitance

moving away from the input. Each individual capacitor capacitance filters different frequencies

from interfering with the Xbee signal stability. The Xbee module can also be shifted slightly to

increase the antenna clearance to prevent the potential for EMF interference while transmitting.

7

Some design changes that are not directly related to the power and signal stability of the

PCB but the overall robustness of design are recommended as well. A dedicated battery

connector port on the PSB is recommended. Where it will not be needed for the deployed units

its addition will mitigate the potential for reversed polarity connections, or the need to power

through a solar charger module when field testing with a battery if a loose wire connection is not

made. Most importantly it will reduce intermittent connections that become worse with the

repeated insertion and removal of wires and components such as the solar chargers into the

female headers. The solar charger units themselves will also be protected from wear and tear as

they are not physically needed for field range testing. Intermittent connections were frequently

8

traced back to connectivity/bootloading and signal strength issues. In this capacity, the dedicated

battery port will improve signal strength. Stronger female machine pin headers are also

recommended and are being sourced and considered that will provide a firmer connection over

time with repeated wire or component insertion. Lastly, the reset switch on more than one PCB

broke off from accidental drops. The switch is to be moved out of the antenna clearance area.

This offers the opportunity when moving the reset to replace it with a smaller two terminals

SPST tactile switch that can be placed elsewhere when the switch is moved that is in a more

protected area. The reset proved to have limited necessity this semester, bootloading and

uploading sketches was done without the physical textile switch. Reset control was given to the

programming Arduino via a wired connection. The trade-off for a harder-to-reach but more

protected location seems to be reasonable.

Bare Arduino Board

From previous semesters, the team used a bare Arduino board or a bare Bumblebee for

relay testing. We started from scratch to build a bare Bumblebee shown in Figure 5. Rebuilding

the bare Bumblebee helped us understand the functionality of each component and the relay node

itself. This bare Bumblebee was used for range testing and we were able to receive data packets

from the coordinator XBee successfully. At the beginning of the semester, there was confusion

as to the capacitor in reset being for the target or programmer Arduino. We found out that we do

not need to put a capacitor in reset because the XCTU code has been upgraded to fix the

problem, reset is no longer pulled low, thus the capacitor is not needed anymore to prevent the

programmer from resetting when attempting to bootload a target. Previously it was believed that

the capacitor made a reset happen automatically. This is not the case. It merely prevented reset

9

from pulling low which will mess up a bootload process. As mentioned, the XCTU code has

been updated to prevent the programming Arduino from resetting when bootloading.

Figure 5: Bumblebee Bare Arduino Board

Bootloading

The main issue that the previous members were having is that they could not bootload the

PCB board. They have been using the bare Arduino on a breadboard with an XBee module for

range test but we want to use a PCB instead. We started from scratch to learn how to bootload the

bare Bumblebee and then we used the PCB board using Arduino Uno to bootload. The first thing

we did was upload the ArduinoISP sketch onto our Arduino Uno to make it a programer to burn

the bootloader. Then wire up the Arduino Uno to our target microcontroller on our PCB board.

We burned the bootloader after making sure to select all the tools correctly and burned the

bootloader. We noticed that we need to remove the microcontroller from the Arduino Uno to

upload sketches to an ATmega[4]. To confirm that a successful bootload and sketch upload was

10

taken by the Atmega328P a blink test was uploaded to both version 4.0 and 4.1. Although

version 4.1 has a fatal flaw previously discussed in the PCB board section that requires a

redesign to be able to deploy it, functionality was achieved by supplying 5 volts to its circuit via

the Arduino’s power supply.

It was decided that further assembly or testing of the 4.1 was not necessary or productive

as other than the regulator which had the flaw in the design version 4.0 and 4.1 are the same. For

the remainder of the semester, range testing was performed with functional 4.0 PCB boards. A

few populated 4.0 boards that had been accidentally damaged and viewed as obsolete thus not

repaired initially were repaired by various means and put back in service to perform many to one

range testing.

Packet Range Testing

The XCTU and Arduino IDE programs were used to test the abilities of the XBee to

transmit and receive packets. The XCTU allows us to set up, configure, and test XBee RF

modules easily. Since our main purpose of the project is to have a relay node that helps to send

meteorological data to the gateway Xbee, we configured three XBees: one as a coordinator and

two as the routers. We can add as many XBee as we want to act as a relay node. The coordinator

XBee acts as the gateway or receiving-end. The two routers are used for the sending-end (sensor

node) and for the relay node to transmit packets to other XBees. XBees that are configured as

routers can transmit packets to other XBees, while coordinators can only receive. XBees are also

identified through their address, which can be divided into two parts, serial low and high.

We want to make sure that the configuration for all the XBees is correct and they are able

to recognize each other. To confirm the communication of the XBee, we need to plug all the

11

XBees into a computer. We used the DigiMesh 2.4TH PRO for the firmware to do Many-to-One

Networking. The APT setting of a coordinator was set to be enabled while the rest of the routers’

API settings were left in the transparent mode. We also need to make sure that the PAN ID or the

destination address for each XBee is the same because PAN ID allows the sending XBbees to

transmit to another that has the same address.

After configuring the XBees, attach the XBee to the PCB board using a battery as a

power source and program it using the Arduino IDE program. A program to send data packets in

certain time intervals can be written using Andrew Rapp’s XBee library for Arduino IDE that can

be found online[3]. When programming the XBee in the PCB board, make sure to change the

switch into DLINE on the XBee shield and switch it back after. If not, a sync error could occur

while trying to upload the code onto the board. To see whether the sending XBee is transmitting

data or there is a communication between the XBees, go back to the XCTU console monitor and

close the port. Once the port is closed, there should be packets received if all the connections are

correct.

Field Range Testing

The purpose of range testing is to take into account as many variables as possible, such as

obstacles and weather, and to gather data on how far the XBee can reach certain distances. To

conduct this testing, a built-in range test software program in XCTU should be used. The data

values include local strength, remote strength, packets sent and received, TX errors, packets lost

and percentage of packets received. By determining those data values, we can conclude how the

signals would behave with different variables. These variables could be based on the weather and

the more wind there is, the more likely the signal will be interrupted. This variable also includes

12

when students are passing by between the two XBee modules and will result in some disruption

in the data.

Set-up

As you can see in Figure 6, the line-of-sight testing provides a clear pathway between the

local and remote XBees while increasing the distance in between after each test. We did the same

process for the range test while using XBee attached to the v4.0 PCB. With the not line-of-sight

testing, there would be obstructions in between the local and remote XBee. As the tests progress,

the number of obstructions in between and the distance between would increase.

Figure 6: Line of Sight Set-up

Range (Field) Testing Results

We were able to fix our bootloading issues this semester; therefore, we used the XBee

S2C Pro and we determined the performance of it by completing range-testing on both our bare

13

Bumblebee board and v4.0 in three different ways; line-of-sight, through the trees, and through

the floors on Holmes Hall. We also did the range testing using DigiMesh as a many-to-one

network.

The purpose of range testing is to take into account as many variables as possible and to

gather data on how far the XBee can implement certain distances such as obstacles and weather.

To conduct this testing, we used a built-in range test software program in XCTU. The data values

included were local strength, remote strength, packets sent and received, TX errors, packets lost

and percentage of packets received. A good signal strength would be greater than -80 dB/m.

Figure 7: Line-of-Sight Range Testing Results using Bare Bumblebee

14

The first range test conducted was the line-of-sight testing completed on Holmes Hall 4th

floor, where there were no obstacles between the local signal and remote relay module. We

placed the local signal on one end of the building and moved the Bumblebee relay module

farther away in increments of 30 feet until we reached the other end of the building. The weather

condition of the first range test was sunny and windy. We received all the packets that were sent

throughout the entire testing procedure as shown in Figure 7. As expected, the signal strength

weakened as the distance increased; however, our dBs were still above -80dB/m. Overall, this

range-testing was a success.

Figure 8: Not Line-of-Sight using Bare Bumblebee (Through Trees at McCarthy Mall)

The second range test was done through the trees in McCarthy Mall. The set-up of this

test was similar to the straight line-of-sight testing. Here, we had the local signal behind the first

tree and varied the remote relay module behind each tree along McCarthy Mall, increasing the

distance and the number of obstructions. As shown in Figure 8, we were able to receive and send

all the packets for all the distances with no package lost in between. However, as we went farther

through the distances, the signals became weak. Compared to the previous semester, we did not

15

get strong signals for farther distances but successfully improved our data results. Due to

COVID-19, there were no people who passed by when we did the testing. Again, the results were

more accurate than the previous semester because our XBees didn’t lose connection.

The third range testing that we did was “line-of-sight” again but, this time we used our

v4.0 PCB board with the battery as a power source. Figure 9 shows the results of line-of-sight

using version 4.0 PCB board. While doing the range test, the weather was rainy and windy. As

we can see, there were some packages lost at 90 ft, 270 ft, and 390 ft. We can also see that the

signal strength gets weaker as the distance increases.

Figure 9: Line-of-Sight Range Testing Results using v4.0 PCB Board

16

We also range tested through the trees at the McCarthy Mall and floor to floor at Holmes

Hall. Figures 10 and 11 show the results of them. There were 3 packages lost at 477 ft and the

signal strength was lower than -80 dB. While we were doing the range test, there were a lot of

people walking around and we assumed that it was an obstruction. During floor to floor range

tests, we figured out that there were some packages lost between the 4th floor and 1st floor. The

strength of the signal also gets weaker as we go farther.

Last but not least, we also successfully transmitted the ASCII value to nodes out of direct

range with Bumblebee 4.0 as a relay router using DigiMesh. However, we haven’t done the

official range testing yet.

Figure 10: Not Line-of-Sight using v4.0 PCB Board (Through Trees at McCarthy Mall)

17

Figure 11: Not Line-of-Sight using v4.0 PCB Board (Holmes Hall Floors)

III. Problems and Solutions

The teams this semester were able to get back into the SCEL lab. This enabled a

considerable amount of progress to be made. The natural attrition of members of the lab through

graduation left mostly new members this semester as with previous semesters. Members who had

previous experience gained it during the initial lockdown phase of covid. This left them with a

disadvantage over a normal semester of experience.

Boot loading a 4.0 and 4.1 PCB was a cornerstone goal of this semester. Initially, all

attempts to bootload both models yielded either sync errors or no communication. The root cause

of version 4.0, not boot loading is believed to be intermittent female header pin connections.

Ultimately this led to incorrect settings being selected for boot loading in attempts to gain sync.

Version 4.1 was not physically powering correctly which was the root cause of the sync error on

version 4.1.

At the beginning of the semester communication between teams was not strong. The

SCEL is a collaborative effort with each team at some capacity overlapping slightly what other

teams are doing. Towards the end of the semester, we were allowed to have one or two members

from other teams come into the lab to work together. This helped immensely as it allowed us to

help others diagnose issues and further to see how each other’s hardware is intended to interact

18

with Bumblebee. Teams communicated with each other previously via zoom; however, this is not

always effective with hardware diagnostic issues.

The various aspects of version 4.1 design issues discussed in the PCB area of this paper

were discovered through many hours of painstaking research to diagnose each. When attempting

data transfer through Rx and Tx to upload a sketch or to communicate between modules any

intermittent poor connection is detrimental. To achieve stable reliable consistent bootload,

upload, and transmission results is the reason why improvements were suggested in these areas

of the PCB.

A step by step thoroughly documented procedural approach to diagnosing and debugging

issues is a major skill set to perfect and take away from the SCEL lab. This will help further

SCEL teams the most.

V. Future Work

We are planning to have a new version 4.2 PCB board to fix the issues we are having with

version 4.1 which is the voltage regulator. We have made some progress on transmitting the data

from one XBee to another using five XBee. We would like to do more range testing using

many-to-one networking for further distance. We would also like to improve the connection or

signal strength by adding more relay nodes as needed. We also want to do the range test using

other hardware team’s boards since our v4.0 functions properly.

VI. Conclusion

At the beginning of the semester, our team had a major learning curve since this is our

first semester joining the SCEL team. However, Francis and Lauryn were able to teach and help

19

us to do and gave us all the information we needed to continue what they’ve done so far. Lauryn

also taught us how to solder the PCB board. Due to COVID-19, we weren’t able to let the other

team members come into the lab. However, in the middle of the semester, some of the team

members were able to come in and help us with the bootloading issues.

We made huge progress this semester. Ever since we were able to fix our bootloading

issues with our v4.0 PCB, we were able to do the range testing with line-of-sight in Holmes Hall,

not line-of-sight in McCarthy Hall, and also in between floors. Initial tests were completed with

many to one communication in Digimesh set up. Zigbee tests can also be completed. Which

mesh network setup will be best for the SCEL project is an item to discuss between the different

teams as well in the future.

20

References

[1] Hawaii Clean Energy Initiative. (n.d.). Retrieved May 08, 2020, from

http://www.hawaiicleanenergyinitiative.org/.

[2] (n.d.). Retrieved April 20, 2021, from http://scel-hawaii.org/research/.

[3] Rapp, Andrew “Arduino library for communicating with XBee radios in API mode” Dec.

2016, https://github.com/andrewrapp/XBee-arduino.

[4] “From Arduino to a Microcontroller on a Breadboard,” Arduino, 05-Feb-2018, [Online].

Available: https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard

[6] “Many-to-one Routing,” DIGI, 29-Aug-2019. [Online]. Available:

https://www.digi.com/resources/documentation/Digidocs/90001942-13/concepts/c_many

_to_one_routing.htm. [Accessed: 16-May-2020].

21

http://www.hawaiicleanenergyinitiative.org/
https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard

