
EE 496 Final Paper for Spring 2020
2nd Generation Relay Node: Team

Bumblebee

Authors: Arnold Flores, Sharmaine Javier, Mizpah Mansanao, Raellis Young

Department of Electrical Engineering

University of Hawaii at Manoa

Renewable Energy and Island Sustainability Program

Smart Campus Energy Lab

15 May 2020

Abstract: ‘Bumblebee’ is Smart Campus Energy Lab’s (SCEL) 2nd generation communications
module designed to relay meteorological data collected from weather boxes on Holmes Hall.
Meteorological data that is collected from the weatherboxes on top of Holmes Hall is sent
wirelessly using an XBee device inside the weatherbox to the gateway in Holmes Hall. Due to
the limited range of the weatherbox sensor node, ‘Bumblebee’ was developed to extend the
range of the sensor node network.



Table of Contents
Introduction 3

Relay Node: Bumblebee Overview 4
Block Diagrams 4
Bare Arduino Board 7
Packet Range Testing 8
Field Range Testing 9
Set-up 10
Range (Field) Testing Results 10

Research - Networking of XBee 14

Problems and Solutions 16

Future Work 17

Conclusion 18

References 20

2



I. Introduction

In 2008, the state of Hawaii and the Department of Energy decided to collaborate to

reduce the dependence on imported fossil fuels. Due to Hawaii being the most fossil

fuel-dependent state in the United States, the goal of the Hawaii Clean Energy Initiative is to

become 100 percent energy clean by 2045[1]. Smart Campus Energy Lab (SCEL) was made in

effort under the University of Hawaii’s Renewable Energy and Island Sustainability (REIS)

program to support the goals of the Hawaii Clean Energy Initiative. The REIS program’s goal is

to help UH Manoa to run on its own microgrid that is powered by 100 percent renewable energy.

SCEL’s goal is to help make this microgrid by designing, building, and deploying

“weather boxes” that can collect and send meteorological data such as temperature, humidity,

and solar irradiance. These weather boxes should be designed and developed so as to be low cost

so that they may be mass produced. Meteorological data that is gathered from these weather

boxes will provide help in planning for future renewable energy installations and data for

forecasting algorithms[2].

Bumblebee does not include any sensors, so it does not collect any data. The ideal

location for Bumblebee boxes would be between distant sensors and the lab gateway. Bumblebee

is based on the third generation of sensor nodes, Cranberry, and uses many of the same

components including the Atmega328P microcontroller, the XBee Pro S2C, and is powered by a

solar panel and rechargeable battery. The Bumblebee box has a simplified circuit and its own

PCB design and housing. Our team also does range testing and networking with XBees.

3



II. Relay Node: Bumblebee Overview

Block Diagrams

The figures shown below are the overall designs of Bumblebee’s power and

communication distribution. Figure 1 shows our signal/communication block diagram. While

Figure 2 illustrates the power block diagram.

Figure 1: Signal/Communication Block Diagram

Figure 2: Power Block Diagram

Figure 1, the signal/communication block diagram shows how the different nodes will

communicate wirelessly. The signal block diagram illustrates the basic path of the data traveling

from the sensor node and eventually to the gateway computer. Since DigiKey has discontinued

XBee S2B Pro, we have switched and currently use the XBee S2C Pro. This block diagram

shows that from the weatherboxes that collect data from its sensors, it will construct a data

packet and send it to the relay node. Bumblebee will receive that data and send it to the gateway

4



XBee to be sent to the lab gateway. Overall, this diagram illustrates that data has to go through

multiple Bumblebee nodes in order for the lab gateway to receive a packet.

In Figure 2, the power block diagram describes the functionality of each of the hardware

components connected. To help power the Bumblebee relay node, a charging circuit and solar

panel are incorporated into the board. A 5V boost converter was implemented in previous

semesters to have the Atmega run at 5V with a 16MHz clock. Previously, only one 3.3V voltage

regulator was used to supply enough voltage to the circuit, considering that no other sensors are

connected to Bumblebee. Implementing a 5V boost converter will improve power battery life and

will allow Bumblebee to function properly as needed.

Designs: Schematic and PCB Layouts

Originally, the main design for the schematic of the relay node is based on the Cranberry

weatherbox. However, over the past few semesters, the design has been modified to fix

connection mistakes and to minimize debugging errors. One of the main challenges that the team

always ran into was determining whether the error was from software or hardware. Because of

this, to eliminate some possible errors on the hardware, the team changed the design of the board

by replacing some parts. One of the main changes was to use a breakout board for the solar

charging circuit instead of keeping the implementation from Cranberry’s design. Another change

in the design was making the Atmega run on 5V, rather than 3.3V. Unfortunately, right now, we

are still in the process of implementing the part successfully.

Referring to last semester’s team, the problem that needed to be fixed was that we needed

a working 5V regulator to boost the current 3.7V to power the Atmega and 16MHz clock. We

modified the schematic and PCB layout from last semester to implement two different 5V

5



regulator parts. Version 4.0 used a 5V step-up breakout board that we use on our bare Arduino

board to minimize debugging errors. Version 4.1 is implemented with an SMD 5V boost

regulator that we found online. Luckily, previous team members had rejoined the team and were

able to be more productive and get more things done in the first half of the semester.

For version 4.0, shown in Figure 3 below, the team decided to implement the 5V step-up

breakout board from Sparkfun. Since the main reason why we wanted to make the Atmega run

on 5V is to minimize debugging errors, we’ve kept the bare Bumblebee and PCB consistent by

using the same part. However, as we were trying to order this part, we found out that it has been

retired. We still pushed through with design because we want to see if the board will be able to

successfully transmit data. Just like the most recent design from the previous semester, the size

of the PCB is kept the same. It is 1.5 inches by 1.75 inches. Since the relay node does not have

sensors, it is much smaller compared to other weather boxes.

Figure 3: Schematic and PCB Layout of Ver. 4.0

As mentioned earlier, the 5V breakout board has been a retired product and is no longer

for sale. Because of that, the team designed another board, which is version 4.1 shown in Figure

4. For this version, we searched for a boost converter that has the same specifications as the part

6



from Sparkfun. The part that we decided to use is the TPS61222DCKR from DigiKey. Similarly,

this is a boost switching regulator with a fixed output of 5V and 200 mA. The current members

do not have experience in finding a suitable part to use. We had a hard time looking for a good

replacement for the voltage regulator looking at the different specifications of the parts. With the

part that we settled with, we are not sure if this part is a good match and will have to do testing in

order to find out.

Figure 4: Schematic and PCB Layout Ver. 4.1

Bare Arduino Board

The bare Arduino board or also known as the bare Bumblebee is a working

communications relay device and a prototype of the PCB Bumblebee. The bare Bumblebee is

essentially the design in Figure 3 but built on a breadboard using breakout boards and DIP chips.

The main use of the bare Bumblebee is to test our design before it is implemented on a PCB. We

also used the bare Bumblebee for range testing of the XBee S2C Pro.

We rebuilt the bare Bumblebee from last semester because there was a sync error that

came up before. Therefore, we decided to reference a picture from the previous semester and

7



build it exactly as shown in Figure 5. This bare Bumblebee board was used for range testing and

was successful in receiving data packets from the coordinator XBee.

Figure 5: Bare Bumblebee

Packet Range Testing

The XCTU and Arduino IDE programs were used to test the abilities of the XBee to

transmit and receive packets. The first step is to configure the XBees into either AT or API mode

using the XCTU program. For this project, we configured three XBees: one as an API

coordinator and two as an API router. The coordinator XBee acts as the gateway or

receiving-end. The two routers are used for the sending-end (sensor node) and for the relay node.

XBees that are configured as routers can transmit packets to other XBees, while coordinators can

only transmit to itself. XBees are also identified through their address, which can be divided into

two parts — serial high and serial low.

In order for the XBees to communicate with each other, their PAN IDs have to be the

same. This can be changed in the XCTU console. When the destination addresses are not

8



specified, the sending XBee can transmit to any XBee with the same PAN ID. To specify which

XBee to transmit to, the destination address of the sending XBee should be the address of the

receiving XBee. For the XBee that is transmitting packets, make sure to change the API mode

from 1(default) to 2. If this is not changed, the XBee can still be recognized by other XBees,

however, it won’t be able to transmit packets.

After configuring the XBees, attach one XBee to an Arduino board and program it using

the Arduino IDE program. A program to send data packets in certain time intervals can be

written using Andrew Rapp’s XBee library for Arduino IDE that can be found online[3]. When

programming the XBee in the Arduino board, make sure to change the switch into DLINE on the

XBee shield and switch it back after. If not, a sync error could occur while trying to upload the

code onto the board. To see whether the sending XBee is transmitting data or there is a

communication between the XBees, go back to the XCTU console monitor and close the port.

Once the port is closed, there should be packets received if all the connections are correct.

Field Range Testing

The purpose of range testing is to take into account as many variables as possible and to

gather data on how far the XB an implement certain distances such as obstacles and weather. To

conduct this testing, a built-in range test software program in XCTU should be used. The data

values include local strength, remote strength, packets sent and received, TX errors, packets lost

and percentage of packets received. By determining those data values, we can conclude how the

signals would behave with different variables. These variables could be based on the weather and

the more wind there is, the more likely the signal will be interrupted. This variable also includes

9



when students are passing by between the two XBee modules and will result in some disruption

in the data.

Set-up

As you can see in Figure 6, the line-of-sight testing provides a clear pathway between the

local and remote XBees while increasing the distance in between after each test. With the not

line-of-sight testing, there would be obstructions in between the local and remote XBee. As the

tests progress, the number of obstructions in between and the distance between would increase.

Figure 6: Line of Sight Set-up

Range (Field) Testing Results

Using the XBee S2C Pro, we determined the performance of it by completing

range-testing on our bare Bumblebee board in three different ways; line-of-sight, not

line-of-sight, and through different floors.

10



The purpose of range testing is to take into account as many variables as possible and to

gather data on how far the XBee can implement certain distances such as obstacles and weather.

To conduct this testing, we used a built-in range test software program in XCTU. The data values

included were local strength, remote strength, packets sent and received, TX errors, packets lost

and percentage of packets received. A good signal strength would be greater than -80.

Figure 7: Line-of-Sight Range Testing Results

11



The first range test conducted was the line-of-sight testing completed on Holmes Hall 4th

floor, where there were no obstacles between the local signal and remote relay module. We

placed the local signal on one end of the building and moved the Bumblebee relay module

farther away in increments of 30 feet until we reached the other end of the building. The weather

condition of the first range test was sunny with light wind. We received most of the packets sent

throughout the entire testing procedure as shown in Figure 7. We are not sure why there are

slight variations where one data packet got lost, but as a whole, this range-testing was a success.

It may have been the fact that the antennas we used worked well with each other or that the

weather was nice.

Figure 8: Not Line-of-Sight (Through Trees at McCarthy Mall)

The second range test done was not line-of-sight testing through the trees in McCarthy

Mall. The set-up of this test was similar to the straight line-of-sight testing. Here, we had the

local signal behind the first tree and varied the remote relay module behind each tree along

McCarthy Mall, increasing the distance. As shown in Figure 8, all packets were received and

sent for the entire testing process. We were shocked by how the signal strength numbers as well

12



as how well this test went despite the rainy, bipolar weather we experienced. Looking at the

signal strength numbers, were around -7 to -8 which represents a strong signal. There were also

many students that passed by and that didn’t seem to affect our results. Again, the results may be

much better than before due to the large antenna we used for both the local and remote XBee.

Figure 9: Not Line-of-Sight (Through Holmes Hall Floors)

The third range testing done was not line-of-sight testing conducted in Holmes Hall

floors. For this test, we set the local signal on Holmes Hall 4th floor and varied the remote relay

module to 3rd, 2nd, and 1st floor. As shown again, all of the packets were received for the entire

testing process. By looking at the numbers in Figure 9, we can see that the local and remote

signal strength gets weaker as we increase the distance. A graph representation of our results can

be seen in Figure 10.

Figure 10: Accumulated Range Testing Results

13



Now that we tested with variables such as weather, distances, obstacles, walls, and

combination of the mentioned, we gained an idea of the effective range of the XBee S2C Pro.

However, there are still other useful variables to test to determine the performance of the XBee.

In the following semester, we plan to repeat and conduct more range testings with the XBee S2C

Pro and conduct more trials and sets of tests for each location.

III. Research - Networking of XBee

During this semester, an unfortunate event happened, which was the COVID-19

pandemic. Because of the situation, we were forced to stay at home and not be able to work in

the lab. Since Bumblebee is a hardware team, it was difficult to continue testing and debugging

the new boards for the semester. To keep the progress of the project, the team decided to spend

the remainder of the semester doing research on the networking of XBee modules. With the

remaining few weeks, we’ve learned about one-to-many and many-to-one routing configurations.

One-to-many routing is also known as point-to-multipoint communication. In this

network, a coordinator acts as a central node that can communicate with one or multiple end

devices. The central node starts the network by a broadcast to all end devices. This will then

allow the end devices to join the network in the selected frequency channel. Since there are

multiple devices communicating with the central node, the coordinator also provides network

synchronization. By doing so, this will eliminate delay in data transmission and reception. In this

network, the synchronization is done by polling nodes[4]. Polling is an access control method that

allows all the end devices in the network to send data. The end devices check for the readiness or

state of the central host first, then one will be chosen to send data[5]. The diagram shown in

14



Figure 11 illustrates the arrangement of the devices in this network. This network topology is

called a star. In this type of network topology, there can only be one coordinator.

Figure 11: One-to-Many Network Topology called Star [4].

Another configuration we learned about is the many-to-one routing. In this configuration,

multiple nodes need to communicate with a single node. This single node performs a centralized

function and is commonly known as a collector or concentrator. In figure 12 below, it shows that

there are more than two roles unlike in the one-to-many routing. The advantage of this network is

the collector sends a many-to-one broadcast transmission to form reverse routes on all other

devices. When the other XBee modules receive this request, the module creates a path back to

the collector by storing a reverse many-to-one routing table entry. This way these devices do not

need to discover a route to send the data to the collector. When every XBee discovers a route to

the collector, it will generate a broadcast route discovery message. If there are multiple XBee, it

will cause the network to be overloaded with these messages. However, in this configuration,

there are no responses generated so the network traffic congestion is minimized[6].

15



Figure 12: One-to-Many Network Topology called Star [6].

To enable this routing in a network, the configuration of the data collector has to be set

using the XCTU software. The Many-to-one Route Broadcast Timeout (AR) parameter sets a 10

second time interval for sending the many-to-one broadcast transmission. When configuring the

XBee module, this parameter needs to be set to 0 to enable this option. Once this is assigned, it

will cause the XBee to immediately send a single many-to-one broadcast to other devices in the

network. There are two ways to disable this option in a network. The first one is to explicitly set

the AR parameter of the collector to 0xFF. When this is set, the many-to-one broadcast by the

collector will end. The other way is to reform the network by broadcasting a System Reset (SR)

command. By doing this, it will remove the data collector status as an aggregator from the

routing tables[6].

IV. Problems and Solutions

This semester we ran into various problems while working on Bumblebee. The biggest

problem we faced was the COVID-19 pandemic. This really put a pause on everything we

wanted to accomplish this semester. We couldn’t get to do range testing with the two PCB relay

16



nodes we designed and fabricated. We were forced to delay testing and debugging our boards

and mainly focus on researching about the networking of the XBee.

Early in the semester, we had changed the EAGLE schematic from the previous semester

to fix the powering problem on our PCB, but we ran into problems when ordering from our usual

PCB manufacturer in China due to COVID-19. We decided to take our chances and order ver.4.0

from the manufacturer in China to see if it would work. With ver. 4.1 and the pandemic

spreading much farther and wider than before, we ordered from a manufacturer in San Francisco.

Although we eventually obtained our PCBs it did take a lot longer than we expected, so we spent

our time range testing and learning how to program the regular XBee S2C while our PCB was

being delivered.

When range-testing with the bare Arduino board, we had a problem with how fragile it

was. All the parts were just plugged in using wires which resulted in the parts falling off easily

and causing us to fix it every single time we carried it somewhere. This resulted in delays where

range-testing that could’ve been completed within an hour, became a two-hour task.

We also ran into problems with our code. After talking with Kenneth we saw that the

problem was probably because of our Rx and Tx declaration. Next semester we want to

collaborate with the firmware team to debug our code.

V. Future Work

Next semester, we want to work with Team Firmware and fix the declaration of the Rx

and Tx lines in our relay code. We plan to debug version 4.0 and repopulate if needed. We also

want to populate version 4.1 and debug it if any problems arise. We want to range-test with both

17



versions to see which works better to deploy. If needed, we may have to find a different part

online if the 5V regulator SMD that we chose is not suitable. This will lead to fabricating a new

board, debugging, and testing as well.

We want to work with the housing team to make a new box for the smaller PCB board we

now have compared to the size we had two semesters ago. We will have to come up with a new

design that will be smaller and possibly cheaper as well.

Something that we may not have realized while range-testing is that the signal of the

XBee could be affected by the EM waves that are present in the labs we are conducting range

testing next to on Holmes Hall 4th floor. That is something that we need to look further into next

semester. We were thinking of doing line-of-sight range-testing on the ground floor of Holmes

Hall where there would be fewer variables to measure.

Also, if time permits, we would like to experiment with either the one-to-many or

many-to-one configuration to see which network would be efficient in the future. For instance,

having multiple sensor nodes communicate to one relay node, which would then transmit to the

next relay or to the gateway.

VI. Conclusion

At the beginning of the semester, team Bumblebee was prepared to make progress in

creating a working communications relay node with all four returning members. From previous

semesters we were able to pinpoint the problem in the Eagle schematic and early in the semester

we quickly designed two versions of PCB. Unfortunately with the impending COVID-19 virus

starting in China, it put a hold on the progress of Bumblebee. As the semester went on we again

18



indirectly felt the effects of COVID-19 as quarantine and social distancing rules were put into

action. This made it very difficult to physically work on our board, with each other in team

Bumblebee, and with our fellow labmates.

Although we were limited on how we worked on Bumblebee we didn’t let that stop us

from working on the project. Through the use of video conference calls and text, we were able to

still communicate with each other and collaborate on ideas. We shifted from hands-on work to

documentation and the research of different types of communications that the XBee is capable

of. We were also able to meet together as a team once to figure out problems and hopefully

range-test one last time. Unfortunately, we had some problems getting the XBees to

communicate with one another so we just did debug when we met up.

We as team Bumblebee were disappointed that we were not able to make the progress

that we had hoped to make since two very experienced members are graduating this semester.

We do believe though that we were able to make some progress with documentation, research on

the capabilities of the XBee, and range testing. In the upcoming semester, team Bumblebee will

be ready to again pick up where we left off thanks to Sharmaine and Mizpah who have prepared

the remaining members in their absence. Next semester we will populate and test v4.0 and v.4.1,

while also working with the Firmware team on the software code in hopes of producing a

working communications relay device.

19



References

[1] Hawaii Clean Energy Initiative. (n.d.). Retrieved May 08, 2020, from

http://www.hawaiicleanenergyinitiative.org/.

[2] (n.d.). Retrieved May 08, 2020, from http://scel-hawaii.org/research/.

[3] Rapp, Andrew “Arduino library for communicating with XBee radios in API mode” Dec.

2016, https://github.com/andrewrapp/XBee-arduino.

[4] “Point-to-multipoint Communication,” DIGI, 09-Sep-2019. [Online]. Available:

https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_point_

to_multipoint.htm.

[5] A. Singhal, “Polling in Networking | Access Control Method,” Gate Vidyalay,

26-Apr-2019. [Online]. Available:

https://www.gatevidyalay.com/polling-access-control-in-networking/.

[6] “Many-to-one Routing,” DIGI, 29-Aug-2019. [Online]. Available:

https://www.digi.com/resources/documentation/Digidocs/90001942-13/concepts/c_many

_to_one_routing.htm. [Accessed: 16-May-2020].

20

http://www.hawaiicleanenergyinitiative.org/

