

Final Paper for Spring 2017 EE 396 2nd Generation Relay
Module: Team Bumblebee

Authors: Kayla Amano, Isaiah Aribal

Date: May 3, 2017

Abstract: The objective of this project was to design a 2nd generation communications module
to relay meteorological data collected by other weatherboxes. Its main purpose is to effectively
increase the range of the weatherboxes.

1 Introduction

The Smart Campus Energy Lab (SCEL) is one of many research laboratories within the

Center for Renewable Energy and Island Sustainability (REIS). The objective of the lab is to

develop technologies and practices to promote sustainability and renewable energy usage.

Currently, the main project of the lab is the development of low-cost and reliable environmental

sensor modules meant to collect meteorological data, such as temperature, humidity, and solar

irradiance. These sensor modules are meant to be placed on rooftops across the University of

Hawaii at Manoa campus. Team Bumblebee’s objective was not to create another weatherbox

module, but rather to create a relay to extend the range of our current weatherbox modules.

2 Bumblebee Relay Module

Started in Spring 2017, the Bumblebee weatherbox is a second generation

communications module designed to relay meteorological data collected by the other

weatherboxes. The first generation relay module, Ant, was started in the Fall 2016 semester and

was based off of the generation Apple weatherbox. According to the datasheet, the Xbee Pro

S2B has an outdoor line of sight range of 2 miles. However, testing has proven that packets can

be dropped at a much closer range. The need to increase the range of the network was the

motivation for the development of a relay module. The main goal of team Bumblebee was to

reimagine Ant to be compatible with the generation Cranberry weatherbox. Other short term

goals for the semester included designing and fabricating a circuit board, doing Xbee field tests,

and creating a working relay module.

2.1 Design

1

The design of Bumblebee was inspired by the design of Cranberry. Unlike Ant, which

used an Arduino Uno board, Bumblebee only uses an Atmega 328P as its microcontroller. This

will help to reduce the size of the board and weatherbox as a whole. What differentiates

Bumblebee from Cranberry and the other weatherboxes is that Bumblebee does not contain any

sensors or collect any data. Bumblebee’s only purpose is to relay data, effectively increasing the

range of the other weatherboxes. Because of this, the only major components that the Bumblebee

board has are the microcontroller, the Atmega 328P, and the Xbee Pro S2B. A complete bill of

materials is not available at this time because all the passive components and other parts have not

been finalized.

2.2 Block Diagram

The block diagrams describe the overall design of both the power system and the

communications of Bumblebee. Figure 1 below shows how the different weatherbox modules

will communicate wirelessly.

Figure 1 Bumblebee Signal/Communication Block Diagram

The signal/communication block diagram describes the basic path that data will travel

between the weatherboxes. For example, Cranberry will collect data from its sensors, construct a

2

packet with the data, and then send the packet to the Bumblebee relay module. Bumblebee will

then receive the packet and forward it to the gateway Xbee, which will then be sent to the lab

computer. The above block diagram is simplified as it is possible that in order to reach the

gateway xbee the packet will need to be passed along by multiple Bumblebee weatherboxes.

Figure 2 Bumblebee Power Block Diagram

The block diagram for the power system can be seen in Figure 2 above. The power block

diagram describes how all of the hardware components are connected. Along with the circuit

board the Bumblebee weatherbox would incorporate a solar panel and charging circuit to help

supply power to the board. Since Bumblebee does not use any sensors and the Atmega and Xbee

can operate at 3.3V, only one 3.3 voltage regulator is required. Doing so decreases the power

consumption and the amount of components needed for this weatherbox. At this time the

prototype of Bumblebee is on a breadboard and power is received from a laptop.

2.3 Bare Arduino Bumblebee

Figure 3 shows the circuit for the Bumblebee weatherbox. This circuit is referred to as the

bare arduino because it does not include the complete arduino board, but only the Atmega 328P

3

microprocessor and a few necessary passive components. As of right now there is no schematic

or PCB design for the board, but future plans include creating one. Without the sensors the

bumblebee box is very simple and does not have very many parts or connections.

Figure 3 Bumblebee Bare Arduino on Breadboard

2.4 Packet Relay Testing

When testing the Xbees’ ability to send and receive packets the programs XCTU and

Arduino IDE were used. XCTU was used to configure the Xbees, manage the network, and

conduct communication testing. Xbees could be configured in either API or AT mode and as

either a coordinator, router, or end device. For the packet testing the Xbees were set in API mode

with one Xbee set as a coordinator and the other two set as routers. XCTU is able to generate

API frames to send and is then able to decode the frame on the receiving end. Where the packet

4

is sent from and the contents can be seen in the XCTU console. In order to communicate with

each other the Xbees had to have the same PAN ID. While testing the Xbees ability to send and

receive when connected to a laptop and XCTU it was found that if the coordinator tries to send a

frame only it will receive its own frame.

As a second step, communication between an Xbee attached to an Arduino board and an

Xbee connected to XCTU was tested. In order to program the Xbee a program had to be written

and uploaded to the Arduino. There is an Xbee library by Andrew Rapp for the Arduino IDE that

can be found online that has all the functions needed to write, send, receive, and read packets.

Two separate programs were written, one for sending a packet and one for receiving a packet and

printing the packet to the serial monitor. The Xbee could be programmed to either send a packet

to a specific Xbee or simply broadcast to all the Xbees, however the focus for these tests was

direct communication. The test packet sent in initial tests was a simple string, “Hi.” Numbers and

other special letters could also be included in the packet. Throughout testing the maximum size

of the packet was never reached. The Xbee connected to the Arduino could also receive packets

sent by the Xbee connected to XCTU. The contents of the received packet could then be viewed

on the serial monitor of Arduino.

Next, an Xbee connected to the bare Arduino board and an Xbee connected to XCTU was

tested. Packets could be sent and received both ways. Then, a third Xbee connected to an

Arduino board was added to the network. The Xbee connected to the Arduino would send a

packet to the bare Arduino Xbee, which would then relay the packet to the XCTU Xbee. In order

to relay the code of the relay Xbee was modified to have both the receiving and sending code.

Also, the code required the received packet to be copied into a new packet to be sent out.

5

After the success of these tests it was attempted to use the gateway simulation and a

weatherbox test packet to test the relay’s ability to relay an actual packet. Up until this point only

string packets were being used, however actual weatherbox packets are set up as a struct with

multiple variables inside. Because there were no sensors to generate data for the packet, values

were hardcoded. From testing is was shown that the code used to forward a simple string packet

could also forward a test weatherbox packet.

2.5 Range (Field) Testing

Some Xbee range testing was done throughout the semester. This was not top priority at

first; however, due to some design problems focus was shifted to range testing. According to the

datasheet the Xbee Pro S2B as seen in Figure 3 below should have an outdoor RF line-of-sight

range of up to 2 miles, and a indoor/urban range of up to 300 ft.

Figure 4 Xbee Pro S2B

Range testing was conducted, taking into account as many variables as possible. One of

the first tests conducted was straight line-of-sight test. This was done on the 4th floor of Holmes

Hall with one Xbee kept at one end of the building, while the other was moved away in

increments of 30 ft all the while keeping line-of-sight. The built-in range test on the XCTU

6

software was used for this testing. When running these test, the data values looked at included:

Local Strength, Remote Strength, Packets sent, Packets sent, Packets received, TX errors,

Packets lost, and Percentage of packets received. Ideally, the signal strengths should have been

around -32 dBm, no TX errors, and 100% packets received. For the line-of-sight test, the results

showed that at 390 ft the signal strengths were around -63 dBm and -65 dBm with 100% packets

received. Figure 5 is a chart showing distance vs the received signal strength.

Figure 5 Distance vs. RSSI for Line of Sight

The next variable tested was not line-of-sight (through obstacles) and was also

conducted on the 4th floor of Holmes Hall. Using the same setup, one Xbee was kept at one end

of the building while the other moved into the next hallway being sure to stay out of sight.

Immediately, at the 72 ft mark 6 packets were lost and Tx errors began to occur. As the distance

between the two increased the number of Tx errors also increased until all packets were unable to

be sent. Also at around the same distances the signal strengths were significantly lower.

7

Figure 6 Distance vs RSSI for Non Line of Sight

Also not line of sight, testing between the floors of Holmes Hall was conducted. From the

fourth floor to the first floor, which is approximately 56 ft, there was 100% packets received and

the signal strength was varying between -77 dBm and -66 dBm. As you can see, the signal

strengths are a little weaker than the line-of-sight values, but we were still able to receive 100%

of the packets.

There are still other useful variables to test; one of which include the effects of different

weather conditions. Being in Hawaii, rain can be very prominent at times and it would be good

to know if rain would affect the range or strength of the RF signals between the Xbees. All of the

range testing data we gathered can be found in Table 1 below.

8

Table 1: Xbee Range Test

3 Problems Encountered and Solutions

The earliest problem encountered was when trying to upload programs to the

microcontroller. Because the microcontroller was not taken from an Arduino, and therefore had

to be bootloaded, the problem was originally thought to be the bootloader. However, from

research it was discovered that the microcontroller needs to be reset during the uploading process

to successfully upload. The Arduino board does this automatically each time a program is

uploaded. In order to replicate this on the bare arduino the reset button had to be pushed after

uploading began. Resetting at the correct time took trial and error and having verbose mode on

helped to get the timing correct. After the Preliminary Design Review another team who had also

had this problem suggested using a capacitor in place of the reset button to automatically reset

the microcontroller. This solution worked for the first few attempts at uploading, but upon

further testing proved to be inconsistent. The reset button was replaced and has continued to be

used when uploading.

9

The microcontroller was originally configured to run on 5V with an external 16MHz

clock. However, because the Xbee runs on 3.3V, multiple voltage regulators and a 5V boost

converter would have been necessary to supply both components with the appropriate voltages.

Based on the design of Cranberry it was known that the microcontroller could run on 3.3V, but

the microcontroller needed to be reconfigured. In an attempt to run at 3.3V and eliminate the

need for the external clock the microcontroller was bootloaded with a program that was supposed

to allow both. Although the microcontroller was bootloaded successfully, no program could be

uploaded to the microcontroller thereafter. The problem was determined to be the bootloader

program. After asking for help it was recommended to not use the internal clock and instead use

an 8MHz external clock and the Arduino Pro (3.3V and 8MHz) bootloader. This was successful.

Because it was important for the Atmega to run on 3.3V the design of the PCB was held off until

this problem was resolved. Ultimately, it took so long to resolve this problem that focus for the

remaining semester was turned to range and relay testing.

Progress continued and it was possible to send simple string packets to the Xbee

connected to the bare arduino and have it forward the packets to another Xbee. When it was

attempted to relay weatherbox test packets, the relay Xbee, which was connected to the bare

arduino circuit, was unable to correctly receive or read the packets and could therefore not

forward them. At first the problem was thought to be the code because changes had been made to

send and receive the weatherbox test packets. Original versions of the code, which only sent

simple string packets, were eventually found and tested. The relay Xbee still did not work. Next,

the voltages of the circuit were tested. It was found that the LM3940 3.3 voltage regulator was

only outputting 2.7V. Looking at datasheet for the voltage regulator, it was observed that the

10

capacitor values being used were incorrect. However, the required capacitance values were not

available, so the LM3940 was switched out with the LM1086 3.3 voltage regulator. Following

this replacement 3.3V was being supplied to the board. Relay tests were also then successful.

This also served as a lesson to upload any code to Github, so that all changes to the code could

be tracked.

4 Future Work

As this is the first semester that the Bumblebee weatherbox has been in development

there is a lot of future work and improvements that can be done. The most important of which

will be designing a PCB. Currently, the bare Arduino version of Bumblebee is working properly

and with a few improvements would be ready to be turned into a PCB. One addition to the board

should be debugging LEDs. Because the board is receiving power from the laptop it is possible

to view what is happening on the serial monitor of the Arduino IDE or within the XCTU console.

Once Bumblebee is fabricated and not connected to a laptop the debugging LEDs will be

important for determining if packets are not being received or sent properly. While pressing the

reset button to upload a program to the microcontroller has been effective, it would be better the

code could be automatically uploaded. Also, if a solution is found to bootload the

microcontroller to work with its internal clock that would eliminate the need for an external

clock and reduce the need for another part.

Another future goal for team Bumblebee will be working on creating a larger network

mesh for the weatherboxes. As of right now each data collecting weatherboxes send their data

packet straight to the gateway Xbee. With the continuation of development of data collecting

weatherboxes and the addition of Bumblebee, it will hopefully be possible to expand the

11

network. This goal also includes potentially allowing data collecting weatherboxes to relay

packets and the weatherboxes being able to find the shortest routes to the gateway.

For future range testing longer distances for line of sight should be tested. Also, there are

a variety of variables that could be tested. Some variables that have been identified for possible

future testing are weather, through different materials, elevation, and location.

5 Conclusion

At the beginning of the semester it was decided that instead of continuing Ant, team

Bumblebee would take inspiration from Ant and Cranberry to design a new relay module. The

relay module’s goal was to effectively extend the range of the weatherboxes. Major problems

encountered throughout the semester were problems uploading to the Atmega and supplying the

board with 3.3V. As of the end of spring 2017 there is a working prototype Bumblebee that is a

bare Arduino constructed on a breadboard. Currently, there is no schematic or PCB design, but

this will be the top priority for the next semester. In terms of packet relay ability, the Bumblebee

prototype is able to receive a weatherbox packet, read it, repackage it, and send it to the gateway.

As of right now the data gathering weatherbox is hardcoded to send directly to the address of the

relay, and the relay is hardcoded to directly send to the address of the gateway. It would be good

if every weatherbox could find out which path to the gateway they need to take. Also,

Bumblebee has only been tested to handle relaying from one source at a time. In the future more

research and testing will need to be done to accommodate more weatherbox nodes into the

network. Some basic range tests for line of sight and non line of sight was conducted. For line of

sight there were no errors for the length of Holmes Hall. However, with just a short distance

obstacles caused a large amount of errors and a drop in signal strength. In the future, more

12

thorough range testing should be conducted. Even other variables not being tested such as time

of day and temperature should be recorded.

`

13

References

1. B. Amano and K.P. Castro. “WIP: Wireless Environmental Sensor Module Generation 3”

University of Hawai ́i at Mānoa. Dec. 2015, revised May 2016.

2. Rapp, Andrew “Arduino library for communicating with XBee radios in API mode” Dec.

2016, https://github.com/andrewrapp/xbee-arduino

3. S. Saepoo. “Self Sufficient Routing Module for Mesh Sensor Network” University of

Hawai ́i at Mānoa. Dec. 2016.

4. “XBee / XBee-PRO ZigBee RF Modules” User Guide, Digi International Inc., Apr. 2008,

revised July 2016, http://www.digi.com/resources/documentation/digidocs/PDFs

/90000976.pdf.

14

https://github.com/andrewrapp/xbee-arduino
http://www.digi.com/resources/documentation/digidocs/PDFs/90000976.pdf

