

Final Paper for Fall 2018 EE 396
2nd Generation Relay Node: Team Bumblebee

Authors: ​​Xiao Jing Chen, Mizpah Mansanao, Sharmaine Javier

Date:​​ 14 December 2018

Abstract:​​ ​​The Smart Campus Energy Lab’s (SCEL) sensor node ‘Bumblebee’ wirelessly
collects and relay meteorological data collected via a weatherbox Xbee device to the gateway in
Holmes Hall 493. The current sensor nodes used in SCEL weather boxes have limited ranges in
populated areas like the University of Hawai’i at Manoa campus. Therefore, the relay module
‘Bumblebee’ was developed to extend the range of the sensor node network. ‘Bumblebee’
utilizes an Xbee Pro S2B for wireless communication, an Atmega328P for its microprocessor,
and a solar panel with a rechargeable battery for power. Along with these components a PCB,
firmware, and housing needed to be developed to create a working relay communication node.
Preliminary range testing with the module has shown that range can extend beyond 400ft and
package send/ receive effectiveness can be affected by “movements” between the two
communication nodes. More testing will be conducted to test the exact limitations of the module
and how to make a more robust network.

Table of Contents
Introduction 3

Relay Node: Bumblebee Overview 3
Block Diagram 3
Design: Schematic and PCB Layout 5
Bare Arduino Board 8
Packet Relay Testing 10
Range (Field) Testing 11

Problems and Solutions 12

Future Work 14

Conclusion 15

References 17

I. Introduction
The Smart Campus Energy Lab (SCEL) is one of the many research laboratories within

the Center of Renewable Energy and Island Sustainability (REIS). The objective of SCEL is to

develop technologies that will promote sustainability and renewable energy usage. The

motivation of SCEL is the development of low-cost and reliable environmental sensor nodes to

collect meteorological data such as temperature, humidity, and solar irradiance. Bumblebee’s

ambition was to create and design a relay to extend the range of current sensor node networks.

These sensor nodes are to be placed on the rooftops of the University of Hawaii at Manoa.

Bumblebee does not involve any sensors. Therefore, the ideal location for Bumblebee

weatherboxes would be in between distant sensors and the lab gateway. Bumblebee is based off

of the third generation of sensor nodes which is Cranberry. Bumblebee has the simplified circuit

with its Atmega328P, Xbee Pro S2B, solar panel and rechargeable battery of 3.6V. Bumblebee is

interested in performing more range testing to improve weather collecting data in the nearest

future and to also network with multiple sensor nodes.

II. Relay Node: Bumblebee Overview

Block Diagram

The block diagrams shown below are the overall design of both power system and

communications of Bumblebee. Figure 1 below represents the power system.

Figure 1: Power Block Diagram

The power block diagram describes the functionality of each of the hardware components

that are connected. To help power the Bumblebee relay node, we incorporated a charging circuit

and a solar panel into the board. Since Bumblebee does not have any sensors, a 5V booster

converter is not necessary because the Atmega and Xbee can operate at 3.3V. Only one voltage

regulator was used to supply enough current to the circuit because there was not much current.

Figure 2 represents the different sensor nodes will communicate wirelessly. The

signal/communication block diagram illustrates the basic paths where the data will travel from

the sensor node to the gateway computer. For instance, Cranberry’s weatherbox will collect data

from its sensors, construct a packet with that collected data and send the packet to the relay node.

Next, Bumblebee receives that data and then forward it to the gateway Xbee which that data is

sent to the lab gateway. Overall, the diagram illustrates that in order for the lab gateway to

receive a packet, data has to go through multiple Bumblebee nodes.

Figure 2: Signal Block Diagram

Design: Schematic and PCB Layout

Referring to the previous team’s meeting minutes, one of the main modifications that

needed to be fixed for this semester is modifying the schematic and PCB layout to include ISP

Programming pins and a capacitor in between the FTDI and Reset pin. Since all members of this

semester’s team are all new, we knew that there will be a lot of learning curve. Because of that to

save us time, instead of making our own PCB layout, we decided to use the previous team’s

design and made the necessary adjustments. The main design for the schematic and PCB layout

is based off the Cranberry Weatherbox. The previous team decided that the design for the board

will consist of all surface mount components with the exceptions of the FTDI and ISP

Programming pins.

(a) (b)
Figure 3: Schematic with ISP Programming Pins and Capacitor between FTDI and Reset

One of the main addition to the schematic from the previous semester was an Xbee sleep

line, which allows the Xbee to remotely put into sleep mode. This implementation will save

power consumption in the board because the Xbee will be in sleep mode when there is no data to

be transmitted. However, since we run out of time this semester, we were not able to implement

and test this addition to our board.

Another component is the programming switch. This is one of the very important parts of

the board because it allows the connection of the RX and TX of the Atmega to be switched

between the TX and RX of FTDI and Xbee. When programming the board, the RX and TX of

the Atmega should be connected to the TX and RX of the FTDI, respectively. When the board is

ready to receive and transmit packets, the programming switch should be flipped so that the RX

and TX of the Atmega are connected to the TX and RX of the Xbee.

Just like the Cranberry Weatherbox, the Bumblebee board uses PPM 20 QFN IC

microchip as a charger. This component was implemented along with other passive parts using

Cranberry’s schematic. The charging chip will help keep the relay node self-sustaining. The solar

tony
Sticky Note
replace "addition" with "additions"

panel will collect energy that will then be used to charge the battery during the day. Three LEDs

are also connected to the charging chip to tell the status of the charger. The three statuses are on,

charging and done charging. A debug switch is used to turn the LEDs on and off to control the

power consumption.

Figure 4: PCB Layout

The current PCB design, shown in Figure 4 has 3 inches by 3 inches dimension. The top

layer of the board is ground, while the bottom layer is split into 3.3V and input voltage from the

charging chip. All of the components are in the top layer. The top half of the top layer of the

board consists of components that require 3.3V. These components include the microprocessor

Atmega328P, Xbee Pro S2B, FTDI, and ISP Programming pins. On the other hand, the bottom

half of the top layer of the board is the charging chip. The components are placed strategically to

met certain criteria. For instance, all capacitors are closed to a respective component to clean the

signals going through. The antenna of the Xbee is also placed where there are no metals nearby.

Metals could possibly interfere with the communication signal and can cause data packet errors

and loss packets.

tony
Sticky Note
replace "met" with "meet"

tony
Sticky Note
replace "no metals" with "no metal"

tony
Sticky Note
replace "Metals" with "Metal"

The current layout of the PCB will produce a bigger housing because of how the wiring

for the battery and solar panel are oriented. For next semester, we are planning to redo the whole

layout of our PCB so that all wires are going in the same direction as the Xbee. This way it will

be easier to come up with the design, and at the same time minimize the size of the housing.

Figure 5: Populated PCB

Bare Arduino Board

At the beginning of the semester, we decided to build the bare Arduino board so that we

can understand the functionality of each component and the relay node itself. For our bare

Arduino, we stick with the 16MHz external clock instead of the 8MHz as it shows in the

schematic. This is to avoid bootloading our Atmega168 to run on 3.3V since this is a different

microprocessor than the one in the schematic. We’ve also used a breakout board for the solar

tony
Sticky Note
Cranberry using a smaller layout.
Why is your board bigger?

tony
Sticky Note
replace "stick" with "stuck"

tony
Sticky Note
replace "it shows" with "shown"

charging chip and a step down 3.3 voltage regulator. There are two debug LEDs to show whether

the board is getting power and if the Xbee is connected.

Figure 6: Bumblebee Bare Arduino Board Ready to be Deployed

We programmed our board using the relay code from previous semester team. Since the

microprocessors are different, we had to make small adjustments on the code. The PCB has the

Atmega328P microprocessor, while our bare Arduino board has the Atmega168. We had to

change the pin numbers on the code so that it corresponds to the pin numbers of the

microprocessor in our bare Arduino board.

After completing our bare Arduino board, we conducted packet relay testing using the

XCTU to test whether our code and Xbee connections work. After making sure the Xbees can

communicate with each other, we also conducted range (field) tests. We did not have much time

to work on our PCB and complete it to be ready for deployment. Because of that, for the first

deployment, we used our bare Arduino board to deploy a relay node. Since we need to put our

board in a house, the housing team made a temporary housing for our board as shown in Figure 5

above. On the deployment day, our Bumblebee board is able to receive packets from Cranberry

weatherbox and transmit it to the gateway. However, when it is already at the roof of Holmes

Hall building, there were no packets being transmitted to the gateway. This problem is addressed

in the problems encountered and solutions section of this report.

Packet Relay Testing

The XCTU and Arduino IDE programs were used to test the abilities of the Xbee to send

and relay packets. The first step is to configure the Xbees into either AT or API mode using the

XCTU program. For this project, we configured three Xbees: one as an API coordinator and two

as an API router. The Xbee configured as a coordinator acts a the gateway or receiving-end. The

two routers are used for the sending-end or sensor node and for the relay node. Xbees that are

configured as routers can transmit packets to other Xbees, while coordinators can only transmit

to itself. Xbees are also identified through their address, which can be divided into two parts ​—

serial high and serial low.

In able for the Xbees to communicate with each other, their PAN IDs have to be the

same. This can be changed in the XCTU console. When the destination addresses are not

specified, the sending Xbee can transmit to any Xbee with the same PAN ID. To specify which

Xbee to transmit to, the destination address of the sending Xbee should be the address of the

receiving Xbee. For the Xbee that is transmitting packets, make sure to change the API mode

from 1(default) to 2. If this is not changed, the Xbee can still be recognized by other Xbees,

however, it won’t be able to transmit packets.

After configuring the Xbees, attach one Xbee to an Arduino board and program it using

the Arduino IDE program. A program to send data packets in certain time interval can be written

tony
Sticky Note
replace "a" with "as"

using Andrew Rapp’s Xbee library for Arduino IDE that can found online. When programming

the Xbee in the Arduino board, make sure to change the switch into DLINE on the Xbee shield

and switch it back after. If not, a sync error could occur while trying to upload the code onto the

board. To see whether the sending Xbee is transmitting data or there is a communication between

the Xbees, go back to the XCTU console monitor and close the port. Once the port is closed,

there should be packets received if all the connections are correct.

Range (Field) Testing

To determine the performance of the Xbee, we performed range testings in three different

ways. The purpose of range testing is to take into account as many variables as possible and to

gather data on how far the Xbee can implement certain distances and obstacles. To conduct this

testing, we used XCTU since it has a built-in range test software program. The data values that

were included were local strength, remote strength, packets sent and received, TX errors, packets

lost, and percentage of packets received. The results of all three range testings are shown in

Figure 7.

The first range test conducted was the straight line-of-sight. This was conducted in

Holmes Hall 4th floor. One Xbee is stationed at one end of the building, while the other Xbee

moves away in increments of 30 feet, keeping it line-of-sight. No packets were lost in this time

of testing. Ideally, the signal strengths should have been around -32 dBm, no TX errors, and

100% packets received. For the line-of-sight test, the results show that at 330 ft the signal

strengths were around -67 dBm and -68 dBm with 100% packets received.

The second range testing done was not line-of-sight which was also conducted in Holmes

Hall floors from 4th to 1st floor. The same set up is performed as the straight line-of-sight, but

the other Xbee moved to different floors. As the distance go farther for the Xbees, the two

increased in number of TX errors and packets lost. In addition, the signal strengths were

significantly lower due to variables like the weather, walls and people passing by.

The third range testing conducted was the through hall at McCarthy Mall at campus. The

same set up was done with this testing just like the straight line-of-sight. Based on Figure 7, it

was a gloomy, windy weather and more students were passing by—this being the reason why

more TX errors showed up in the overall results. There are still more useful variables to test to

determine the performance of the Xbees. Since we are using Xbee S2B, we plan to conduct more

range testings with Xbee S2C.

Figure 7: Range Testing Results

III. Problems and Solutions
The initial problem was getting ourselves familiarized with the project ‘Bumblebee’ as

we were all new members to this project. We were unsure of which direction to take when we

tony
Sticky Note
replace "go farther" with "increases"

tony
Sticky Note
replace "two .. lost" with
"number of TX errors and packets lost increased".
Also discuss how the number of errors increased, sudden increase or gradual.

tony
Sticky Note
when conducting tests you should try each location multiple times and then get the statistics on the results

first began the lab hours. Luckily for us, the past bumblebee team has done excellent

documentation on their purpose, process, and the problems they ran into along with the solutions.

After we familiarized ourselves and began the bare Arduino building process, we

encountered several problems when uploading the code into our board. One of the reasons for

that error was caused by the 8MHz clock. Since our microprocessor is not configured to run on

8MHz, we changed it back to the 16MHz clock and we were able to upload the necessary code

as well as uploading the relay and sending codes into the two Xbees.

After configuring the Xbees, we tested to see if the coordinator was receiving data, but it

wasn’t receiving anything. We asked from the mentors, Andrew, and Kenneth for help.

However, they were also struggling. Furthermore, after three weeks of trying to figure out the

cause of this problem, we, with the help from Kenny and past team members, finally reached to a

resolution that the main problem was the API mode setting on the XCTU. After changing the

API mode from 1 (which was the default) to 2, we tested our board and our Xbees started to send

and receive data on both ends.

With our completed Bumblebee board that can successfully relay Cranberry packets to

SCEL’s gateway, we deployed at the end of October. To our surprise, gateway did not receive

any packets from bumblebee. We later found out that the wiggle room on our housing for the

antenna caused our Xbee to be slightly lifted and loosened, therefore causing a bad connection to

the board. We decided to deploy next with our PCB instead of attempting to deploy again with

our Bumblebee board.

The following week, we populated our PCB board. However, we soon discovered that we

were not able to receive a package. We discovered that certain components were not soldered on

tony
Sticky Note
replace "were also struggling" with
"also had difficulties determining the problem"

tony
Sticky Note
replace "reached to a resolution"
with "concluded"

accurately and therefore not connected. We immediately resoldered those components.

Unfortunately, our PCB still wasn’t able to receive a package. It could be a software or

hardware problem that we are working on figuring out.

IV. Future Work
At this moment, we have a populated PCB with unknown hardware and/or software

problem. In the following semester, we plan to debug our PCB as we are unable to receive

packets as of now. Unfortunately, we did not have a working PCB this semester, we did not have

a chance to deploy Bumblebee. However, next semester we hope to be able to deploy. To

achieve that goal, we also need to communicate with Team Strawberry to create a housing for

our PCB and components. The current design of our PCB will produce a bigger housing

compared to the other teams. It is because of the orientation of the wirings, which is addressed

above. For next semester, we plan to modify or create a new PCB design that will take into

account the possible way to minimize the size of the housing.

Earlier this semester, we found out that XBee S2B Pro, the wireless communication

component we are currently using, has been discontinued. We will do research on the new

wireless communication component XBee Pro S2C and integrate it to bumblebee so all the

components are easily accessible and updated.

For this semester, we worked with Team Cranberry during the deployment. However,

because of the error that occurred, we were unsuccessful to deploy a relay node. During the

communication testing of the Xbees in our Bumblebee board and Cranberry board, we noticed

that Bumblebee is not able to handle more than one packets at the same time. Based on what

Andrew suggested this should be a small modification on the relay code. In addition, we hope to

tony
Sticky Note
perhaps you should redesign

tony
Sticky Note
always use capital letters for
Bumblebee

tony
Sticky Note
replace "packets" with "packet"

work on the ability to relay information for multiple sensor nodes instead of just one so that

Bumblebee can relay ​collected meteorological data packets of Cranberry, Guava, and Apple​.

V. Conclusion
At the beginning of the Fall 2018 semester, there was a big learning curve to catch up

with the progress of past members since we are the new members of Bumblebee. We were able

to slowly adjust to the new materials and concepts with this project after referring to previous

team’s work such as reports and meeting minutes as well as their schematics and PCB layout.

The first approach to improve Bumblebee is to do some modification on the PCB layout just as

the past member suggested which is to add the ISP programming pins and putting capacitor

between the reset and FTDI. Moreover, building a bare Arduino was necessary to do to have a

more understanding of the functionality of Bumblebee and to see if the schematic is accurate.

With this process, we ran into multiple problems, but we were able to resolve them with the help

of the leadership people and exchange emails from past members.

The downcast of this semester’s Bumblebee is the undeployment. Due to the late arrival

of our board, we were not able to meet the deadline and also encountered problems that we have

yet to resolve. Nonetheless, we hope to achieve of deploying two Bumblebee weatherboxes on

the roof of Holmes Hall. To reach this goal, we hope to debug our PCB and deploy with a

customized housing, integrate XBee S2C Pro to our code and layout, potentially work with team

Guava and Apple to relay their packets, and lastly work on the ability to ​relay information for

multiple sensor nodes instead of just one as well as conducting more range testings in different

conditions.

tony
Sticky Note
replace first sentence with
"Unfortunately, Bumblebee was not able to have a successful deployment this semester."

tony
Sticky Note
delete "of"

tony
Sticky Note
after "Hall" add "during the next semester"

Overall, this project has been a great learning experience. We had a chance to gain more

knowledge and enhanced our skills in XBee communications and networking, PCB design, and

soldering. This project allowed us to visualize what we learned in class and strengthen our

knowledge of it. Because we are the new members of Bumblebee, we encountered numerous

obstacles in knowing the new materials and concepts on how Bumblebee really works. However,

we were able to gradually adjust to the new environment and work through the process. \

References

1. Gammon, Nick “Atmega Board Programmer” Mar 29,

https://github.com/nickgammon/arduino_sketches/tree/master/Atmega_Board_Programm

er

2. Rapp, Andrew “Arduino library for communicating with Xbee radios in API mode” Dec.

2016, https://github.com/andrewrapp/Xbee-arduino

3. Xbee / Xbee-PRO ZigBee RF nodes” User Guide, Digi International Inc., April 2008,

revised July 2016, http://www.digi.com/resources/documentation/digidocs/PDFs

/90000976.pdf.

tony
Sticky Note
References should be on new page

tony
Sticky Note
You made good progress this semester, but still need to debug problems from you board this term and the debug and deploy PCB next term.

