

Cranberry EE396 Preliminary Design Review

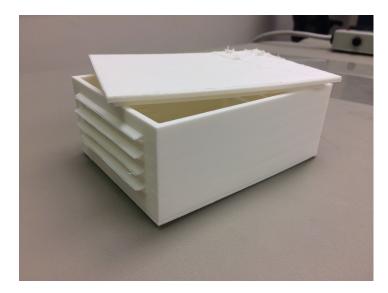
Jennifer Chun, Joslyn Hamada, Emily Lum Mentor: Tyrin Besas

Overview

- Block Diagram
- Power Budget
- Progress
- Problems
- Updated Schedule
- Future Improvements
- Questions

Block Diagram

Power Budget


Cranberry Version 3.2 & 3.5 Power Budget

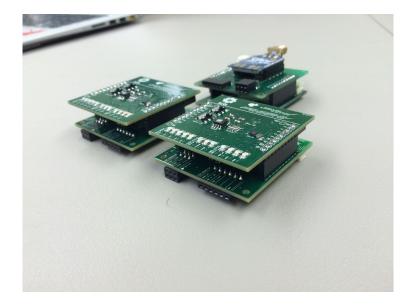
Cranberry Notes and Documentation 3.3 Volt Module **Datasheet Values XBee Characteristics** Revision: R1.0 * Current Draw (mA) and Avg. Power (mW) calculations Device Name Idle (mA) Typical Current Draw (mA) Max Current Draw (mA) **Transmit Time** Idle Time assume sensors (barometer, etc.) are polling 1/2 of time. 0.0109% XBee Transmit 15.00 205.00 220.00 99.9891% * V. Reg current values are taken from datasheet values for XBee Recieve loads of lout = 50mA, because total average system current Barometer 0.01 0.01 0.01 draw is approximately 57mA for the 3.3V regulator. Humidity (HIH6031) 0.00 0.65 1.00 * Assume XBee leakage currents are negligible (µA << mA). V. Reg 3.3V (Main) 0.35 0.90 * Assume XBee only operates in transmit/idle mode (i.e. does V. Reg 3.3V (Xbee) 0.35 0.90 not receive data from the server). Atmega 328P MCU 1.70 2.70 0.70 * For XBee Transmit/Idle Time, use given parameters: 82bytes Irradiance ADC 0.01 0.15 0.30 (Transmit Rate = 250 kbps), sent to the server every 3 seconds. Irradiance Op Amp 0.80 2.20 Total Current Draw (mA) 15.72 209.01 228 01 Supply Voltage (V) 3.30 3.30 3.30 Total Power Consumption (mW) 51.86 689.72 752.42 Rechargeable Li-Po Batteries (3.7V) Voltage (V) Current (mAH) Useable Energy (%) Battery 6600 mAH Li-ion 3.7V 3.7 6600 80.0% **Estimated Battery Running Time** V. Reg Efficiency (%) Energy (mWH) Max Power Consuption (mW) Max (Hrs) Max w/ V. Reg Efficiency (Hrs) Battery 6600 mAH Li-ion 3.7V 19536 75.99 257.1 205.67 80.0%

Progress

- Completed housing
- Worked on 3 boards
- Version 3.2 Current State:
 No longer useable
- Version 3.5 Current State:
 - \circ 1 programmed: correct sensor readings
 - Crimping solar irradiance sensor
 - \circ 1 doesn't program

Problems & Solutions

- Wrong clock so the board wouldn't program
 - \circ $\,$ Changed the clock to an 8 Mhz $\,$
- Firmware got stuck at pressure sensor
 - \circ $\,$ Fixed pressure sensor by moving it
- Solar Irradiance sensor invalid readings
 - Rewired the sensor correctly


Updated Schedule

	10/3	10/10	10/17	10/24	10/31	11/7	11/14	11/21	11/28	12/5	Finals
Finish Debug 3.5											
Deploy											
Research Improvements											
Improve PCB Layout			-								
Build Board		5							N		
Test Sensors											6.
Deploy										5	

Future Improvements

- Change charging chip package
- Get rid of MCU debug lights
- Take of the AVRISP header pins
 FTDI is used to program it

Any Questions?

