Cranberry

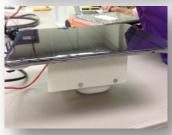
Experimental Weatherbox Platform

Kim Pee Castro Brandon Amano

Preliminary Design Review (PDR) Presentation October 16th, 2015

Smart Campus Energy Lab (SCEL)

Renewable Energy & Island Sustainability (REIS)



Project Overview

- Cranberry Experimental Weatherbox Platform
 - Weather Sensor Module Measures barometric pressure, humidity, temperature, and luminosity.
 - Improvements over Apple design:
 - ✓ More efficient power system
 - ✓ Reduction in cost and size
- Current State: Inoperable
 - ✓ Charging Chip
 - ✓ Invalid Sensor Readings

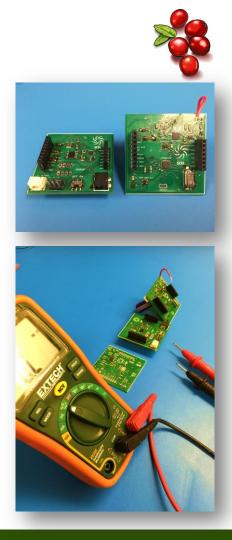
Motivation and Goals

Motivation

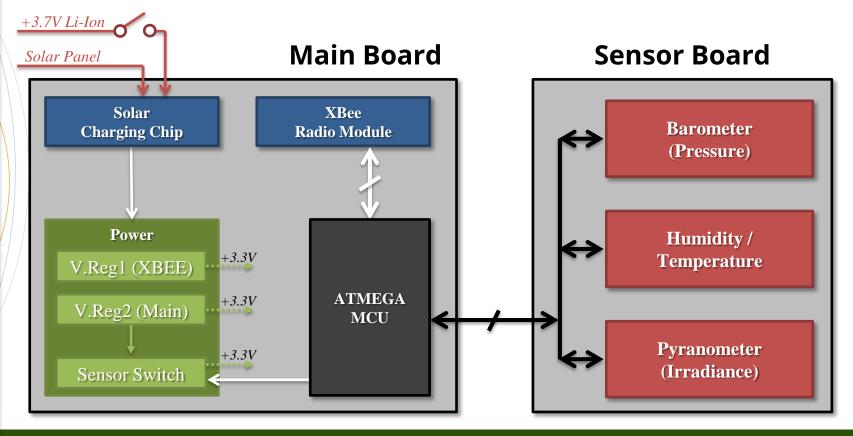
- Understand more about renewable energy related fields
- Apply engineering and design skills and use of relevant tools

Goals

- Update Cranberry Documentation
- Troubleshoot problems with current design and fabricate operational board
- Improve upon *Cranberry* board layout and implement personal design preferences


Team Approach

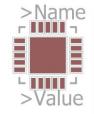
Phase One: Test / Fix Current Design


- Understand design connections, parts, etc.
- Update documentation part library and schematic
- Assemble parts onto a working board
- Debug and fix problems
- Produce a working *Cranberry* board

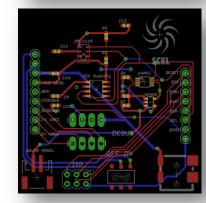
Phase Two: 2nd Iteration Design

- More efficient use of PCB space
- Consider different IC packages
- Manufacture revised PCB

Hardware Block Diagram 🤏

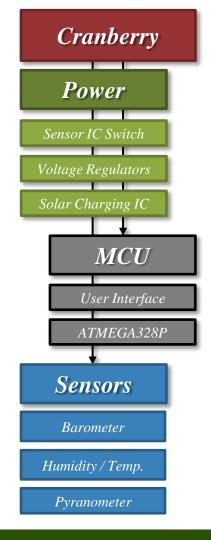

Parts Library and Schematic Update

Completed Parts


- Freescale I2C Digital Barometer
- Microchip Solar Panel Charging Chip
- Honeywell Relative Humidity / Temperature Sensor

Remaining Parts

- XBee
- Atmel Microcontroller
- Apogee Pyranometer (Solar Irradiance)
- Voltage Regulators
- Discrete Components


Testing Procedure 🤏

Incremental Approach – For each module:

- Verify schematics from datasheet to EAGLE layout.
- Solder on appropriate components.
- Perform continuity checks.
- Ensure proper PWR and GND connections.
- Test the validity of I/O values.

Add next module and repeat testing / debugging steps.

Potential Problems and Issues

Time Management

Hardware Problems:

- Inexperience with SMD Soldering
- Inexperience with PCB Design Software
 - Translation of datasheet package dimensions into EAGLE.
 - Unfamiliarity with EAGLE tools and interface.

Software Problems

Programming the MCU and getting sensor readings

Current Progress and Updated Schedule >

Current Progress:

- Took inventory and ordered parts
- Begun creating library of EAGLE parts
- Read Cranberry documentation and schematics
- Comparing datasheets to EAGLE layout

Upcoming Deadlines:

- *Oct. 23rd* Finish library and power/charging chip module
- *Nov. 6*th Finish MCU and Sensor ICs

Any Questions?

Cranberry Experimental Weatherbox Platform

Smart Campus Energy Lab (SCEL)

Renewable Energy & Island Sustainability (REIS)

University of Hawaii at Manoa

10