Guava Bootloading Documentation

Written By: Team Guava
Last Updated: 1/30/2020

(A
=

Page 1
Supplies:

e Arduino Uno
e 1x Micro USB cable
e 1x USB Type A/B cable
e Bare arduino
o 2x Capacitors (22 pF)
o Crystal Clock (8 MHz)
o 1x Resistor (100 Q)
o 1x Push button
o Microcontroller of Choice (ATMEGA1284)

o Misc wires

Software:

e Arduino IDE
e Microcontroller library (Mighty)

Getting Started:

Microcontrollers require a bootloader to install programs onto them. Fortunately
most microcontrollers come bootloaded after purchasing them, but an Arduino Uno can
be used to bootload them yourself. To begin bootloading, you will want to construct your
bare arduino with your microcontroller of choice (Team Guava uses the ATMEGA1284)
or find a working PCB. The Arduino Uno will be used as an ISP (In-System
Programmer) to burn the bootloader, and power the circuit. You can follow the
instructions on the Arduino website to construct your bare arduino through this link or

through the documentation on the wiki.

https://www.arduino.cc/en/main/standalone

(=
\\g))

Page 2
Configuring the Arduino Uno:

To configure the Arduino Uno for in-system-programming, it will need to be
connected to the bare Arduino or PCB that your microcontroller is located on.
Bootloading requires the SPI (Serial Peripheral Interface) protocol as compared to 12C
protocol, and their differences can be found through this link. For the purposes of this
tutorial, we will be using the ATMEGA 1284, but should still work for any microcontroller

with SPI pins. A schematic for the bootloading configuration can be found in Figure 1

below:
hy 22pf I 16MHz
= = |
= zm
= 22pf
'.I.~e~ i :IA '-'I;s .J.; TR0 RAD %1 A2 Gew .'[' %x PEJ PEE PES :--Iu *1 :-=Is.= :--IH. :--J--: Arduino/Genuine Uno
K [X1&
Mis0
ATmegal2B4P (:
POT PCO PCY PC2 PCA PCA PCES PCE PEY Awer Gan Aav: PAT PAG PAS PAL PAT PAZ PAT PAL | |
L A I OO
(

Figure 1: Connecting an Arduino Uno to an ATMega1284 for ISP programming

You may be using a different microcontroller than the ATMega1284 (such as the
ATMEGAS328), in which the pins will be located in different places. In that case, you will

want to follow the following table for connecting the Uno to your bare arduino:

https://aticleworld.com/difference-between-i2c-and-spi/

Page 3
Microcontroller Pin Arduino Uno Pin
RESET 10
MOSI 11
MISO 12
SCK 13
VIN 5V or 3.3V
GND GND

Figure 2: Pin configurations for connecting a microcontroller to the Arduino Uno for ISP

Programming

Burning the Bootloader:

Once the Arduino Uno is configured for ISP programming, open up the Arduino
IDE software and install the core for your microcontroller. You can find the cores from

this github repository or this one, depending on which microcontroller you are using, and

install them through this tutorial. To verify that it installed properly, check under Tools —
Boards and find the submenu labelled, “MightyCore”. Beneath this menu should be the
list of supported microcontrollers, where you can check to see if your microcontroller is
listed. You will also want to verify that the Arduino IDE is recognizing the Arduino Uno,
which can be viewed under Tools — Ports. If the Arduino Uno is plugged into the
computer it should appear here.

There are two main phases in bootloading using the Arduino Uno. In the first
phase, you will need to upload the ArduinolSP sketch to the Uno. This can be found
under File — Examples — 11.ArduinolSP. Make sure the Arduino Uno is plugged into
the computer and select, “Arduino / Genuino Uno”, under Tools — Boards. Change the
port to match the one that the Uno is connected to under Tools — Ports. We will be
using the “AVR mkll” programmer for this first phase, which can be found under Tools
— Programmer. Once these steps are verified, upload the ArduinolSP code to the Uno

by holding Ctrl + U, or by clicking on the sideways arrow towards the top of the window.

https://github.com/MCUdude/MightyCore
https://github.com/MCUdude/MiniCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/

(@

)

)

(r_\

(@

-,

Page 4
If it does not upload correctly, check the ports and board selection. A screenshot of the
correct configuration can be found below in Figure 3:

File Edit Sketch Tocols Help

Auto Format Ctrl+T
Archive Sketch

Blink § Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+I
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+5hift+L

WIF01 / WiFiMIMNA Firmware Updater

Board: "Arduino Uno" b
Port
Get Board Info

Programmer: "AVEISP mkll" >

Burn Bootloader

Figure 3: Settings for uploading Arduino.ISP to the Arduino Uno

In the next phase, we will be burning the bootloader onto the microcontroller. We
will be using the same port from the first phase, but you will need to change the board to
the microcontroller that you are using under Tools — Boards. For the purposes of this
tutorial we will be selecting the “ATmega1284” option under the MightyCore submenu.
Change the programmer to “Arduino as ISP” under Tools — Programmer so that the
Arduino Uno will be used as an ISP. Check to make sure that the other settings such as
Clock or Variant match the configuration you are using. The other settings are best left
at the default values, but can be changed if you know what you are doing. To burn the

bootloader onto the microcontroller, click on, “Burn Bootloader” under the Tools menu.

)

=

¢
)

\S
<,

Page 5

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Blink Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+]
: Serial Menitor Crl+ Shift M
LF] Serial Plotter Ctrl+Shift+L sy

WiFiI101 / WiFiNIMA Firmware Updater UNO. MEGA and ZERC

Board: "ATmegal284" Boards Manager...
Clock: "External 16 MHz" Arduino AVR Boards ?
BOD: "BOD 2.7%" MightyCore & ATmegaldd4
EEPROM: "EEPROM retained” * ATmegabdd
Compiler LTO: "LTO disabled" » ATmega324
Variant: "1284p" * ATmegaltd
Pinout: "Standard pinout” 4 ATmega3d
Bootloader: "Yes (WARTO)" * ATmegalt
Port ATmegal833s
Get Board Info
Programmer »

ALLD L W Burn Bootloader

// the setup function runs once when you press reset or power the board
void setup() {

ff initialize digital pin LED BUILTIN as an output.

pinMode (LED BUILTIN, COUTFUT);

}

Figure 4: Settings for bootloading the ATmeqga1284

After this step, your microcontroller should be bootloaded properly. You can test
it by uploading a sketch through the FTDI or by pressing the reset button and checking
if the LED flashes.

TLDR:

o M 0D~

Build bare arduino
Connect Arduino Uno to bare arduino using table in Figure 2
Install appropriate microcontroller core
Open ArduinolSP file under File — Examples — 11.ArduinolSP
Under Tools make sure the following settings are selected:

a. Boards — “Arduino / Genuino Uno”

b. Port —» “COM# (Arduino / Genuino Uno)”

c. Programmer — “AVR mkll”

6. Upload code

7. Change the settings under Tools again to the following:

a. Boards — “(ATmega####)”
b. Port — “COM# (Arduino / Genuino Uno)”
c. Programmer — “Arduino as ISP”

Burn the bootloader under Tools — Burn Bootloader

Page 6

)

=

(@
)

N\
<,

Page 7
References:

Bootloading tutorial:

e http://www.technoblogy.com/show?190V#bootloader
I2C and SPI Differences:

e https://aticleworld.com/difference-between-i2c-and-spi/
MightyCore Github:

e https://qithub.com/MCUdude/MightyCore
MiniCore Github:

e https://github.com/MCUdude/MiniCore

Core Installation Tutorial:

e https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core

-for-the-atmega16-atmega32-atmega324-and-more/

Standard, Bobuino, and Sanguino Pinouts:
e https://qithub.com/MCUdude/MightyCore#pinout

Further Readings:

ATMEGAZ328P Bootloader:
e https://www.circuito.io/blog/atmega328p-bootloader/

e https://www.arduino.cc/en/Tutorial/BuiltinExamples/ArduinoToBreadboard
ISP’s:
e https://www.quora.com/What-is-in-system-programming

e https://en.wikipedia.org/wiki/In-system_programming
Communication Protocols (12C, SPI, UART):

e https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-

protocols-and-uses/

e https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-12C.html

http://www.technoblogy.com/show?19OV#bootloader
https://aticleworld.com/difference-between-i2c-and-spi/
https://github.com/MCUdude/MightyCore
https://github.com/MCUdude/MiniCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://github.com/MCUdude/MightyCore#pinout
https://www.circuito.io/blog/atmega328p-bootloader/
https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard
https://www.quora.com/What-is-in-system-programming
https://en.wikipedia.org/wiki/In-system_programming
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html

