

Guava Bootloading Documentation

Written By: Team Guava

Last Updated: 1/30/2020

Page 1

Supplies:

● Arduino Uno
● 1x Micro USB cable

● 1x USB Type A/B cable

● Bare arduino
○ 2x Capacitors (22 pF)

○ Crystal Clock (8 MHz)
○ 1x Resistor (100 Ω)

○ 1x Push button

○ Microcontroller of Choice (ATMEGA1284)
○ Misc wires

Software:

● Arduino IDE

● Microcontroller library (Mighty)

Getting Started:

Microcontrollers require a bootloader to install programs onto them. Fortunately
most microcontrollers come bootloaded after purchasing them, but an Arduino Uno can

be used to bootload them yourself. To begin bootloading, you will want to construct your

bare arduino with your microcontroller of choice (Team Guava uses the ATMEGA1284)
or find a working PCB. The Arduino Uno will be used as an ISP (In-System

Programmer) to burn the bootloader, and power the circuit. You can follow the
instructions on the Arduino website to construct your bare arduino through this link or

through the documentation on the wiki.

https://www.arduino.cc/en/main/standalone

Page 2

Configuring the Arduino Uno:

To configure the Arduino Uno for in-system-programming, it will need to be
connected to the bare Arduino or PCB that your microcontroller is located on.

Bootloading requires the SPI (Serial Peripheral Interface) protocol as compared to I2C

protocol, and their differences can be found through this link. For the purposes of this
tutorial, we will be using the ATMEGA1284, but should still work for any microcontroller

with SPI pins. A schematic for the bootloading configuration can be found in Figure 1
below:

Figure 1: Connecting an Arduino Uno to an ATMega1284 for ISP programming

You may be using a different microcontroller than the ATMega1284 (such as the
ATMEGA328), in which the pins will be located in different places. In that case, you will

want to follow the following table for connecting the Uno to your bare arduino:

https://aticleworld.com/difference-between-i2c-and-spi/

Page 3

Figure 2: Pin configurations for connecting a microcontroller to the Arduino Uno for ISP

Programming

Burning the Bootloader:

Once the Arduino Uno is configured for ISP programming, open up the Arduino

IDE software and install the core for your microcontroller. You can find the cores from
this github repository or this one, depending on which microcontroller you are using, and

install them through this tutorial. To verify that it installed properly, check under Tools →
Boards and find the submenu labelled, “MightyCore”. Beneath this menu should be the

list of supported microcontrollers, where you can check to see if your microcontroller is

listed. You will also want to verify that the Arduino IDE is recognizing the Arduino Uno,
which can be viewed under Tools → Ports. If the Arduino Uno is plugged into the

computer it should appear here.
There are two main phases in bootloading using the Arduino Uno. In the first

phase, you will need to upload the ArduinoISP sketch to the Uno. This can be found

under File → Examples → 11.ArduinoISP. Make sure the Arduino Uno is plugged into
the computer and select, “Arduino / Genuino Uno”, under Tools → Boards. Change the

port to match the one that the Uno is connected to under Tools → Ports. We will be
using the “AVR mkII” programmer for this first phase, which can be found under Tools

→ Programmer. Once these steps are verified, upload the ArduinoISP code to the Uno

by holding Ctrl + U, or by clicking on the sideways arrow towards the top of the window.

Microcontroller Pin Arduino Uno Pin

RESET 10

MOSI 11

MISO 12

SCK 13

VIN 5V or 3.3V

GND GND

https://github.com/MCUdude/MightyCore
https://github.com/MCUdude/MiniCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/

Page 4

If it does not upload correctly, check the ports and board selection. A screenshot of the
correct configuration can be found below in Figure 3:

Figure 3: Settings for uploading Arduino.ISP to the Arduino Uno

In the next phase, we will be burning the bootloader onto the microcontroller. We

will be using the same port from the first phase, but you will need to change the board to
the microcontroller that you are using under Tools → Boards. For the purposes of this

tutorial we will be selecting the “ATmega1284” option under the MightyCore submenu.

Change the programmer to “Arduino as ISP” under Tools → Programmer so that the
Arduino Uno will be used as an ISP. Check to make sure that the other settings such as

Clock or Variant match the configuration you are using. The other settings are best left
at the default values, but can be changed if you know what you are doing. To burn the

bootloader onto the microcontroller, click on, “Burn Bootloader” under the Tools menu.

Page 5

Figure 4: Settings for bootloading the ATmega1284

After this step, your microcontroller should be bootloaded properly. You can test

it by uploading a sketch through the FTDI or by pressing the reset button and checking
if the LED flashes.

Page 6

TLDR:

1. Build bare arduino
2. Connect Arduino Uno to bare arduino using table in Figure 2

3. Install appropriate microcontroller core
4. Open ArduinoISP file under File → Examples → 11.ArduinoISP

5. Under Tools make sure the following settings are selected:

a. Boards → “Arduino / Genuino Uno”
b. Port → “COM# (Arduino / Genuino Uno)”

c. Programmer → “AVR mkII”
6. Upload code

7. Change the settings under Tools again to the following:

a. Boards → “(ATmega####)”
b. Port → “COM# (Arduino / Genuino Uno)”

c. Programmer → “Arduino as ISP”
8. Burn the bootloader under Tools → Burn Bootloader

Page 7

References:

Bootloading tutorial:

● http://www.technoblogy.com/show?19OV#bootloader

I2C and SPI Differences:
● https://aticleworld.com/difference-between-i2c-and-spi/

MightyCore Github:

● https://github.com/MCUdude/MightyCore
MiniCore Github:

● https://github.com/MCUdude/MiniCore
Core Installation Tutorial:

● https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core

-for-the-atmega16-atmega32-atmega324-and-more/
Standard, Bobuino, and Sanguino Pinouts:

● https://github.com/MCUdude/MightyCore#pinout

Further Readings:

ATMEGA328P Bootloader:

● https://www.circuito.io/blog/atmega328p-bootloader/

● https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard

ISP’s:
● https://www.quora.com/What-is-in-system-programming

● https://en.wikipedia.org/wiki/In-system_programming
Communication Protocols (I2C, SPI, UART):

● https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-

protocols-and-uses/
● https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html

http://www.technoblogy.com/show?19OV#bootloader
https://aticleworld.com/difference-between-i2c-and-spi/
https://github.com/MCUdude/MightyCore
https://github.com/MCUdude/MiniCore
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://elementztechblog.wordpress.com/2016/10/28/mightycore-an-arduino-core-for-the-atmega16-atmega32-atmega324-and-more/
https://github.com/MCUdude/MightyCore#pinout
https://www.circuito.io/blog/atmega328p-bootloader/
https://www.arduino.cc/en/Tutorial/BuiltInExamples/ArduinoToBreadboard
https://www.quora.com/What-is-in-system-programming
https://en.wikipedia.org/wiki/In-system_programming
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-and-uses/
https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html

