Wind Sensor Project Proposal

Keoni Davey Binguang Wang Alex Noveloso Scott Nishihara

Project Overview

Objective: To build a wind sensor that is low cost, small, reliable, durable, and has no moving parts that detects 2D speed and direction.

- Current design uses four microphones
- Limited by processing speed
- Single microphone works well
- Not deployable
- Works for "steady state" values (processing)

Goals & Learning Expectations

Acquire the tools necessary to implement ideas (general purpose)

PCB Design (Fritzing) & Fabrication

3D-printing & design

How to create a standalone

Create a working, reproducible model (solve problem of current design)

Modular

Easy to "manufacture" in-house

Deployment

Housing

Approach

Improve current platform

- Realizable
- Familiarity
- Low cost
- Tangible benefits
 - Modular design
 - Skill acquisition

4 Controllers & 1 Processor

- Atmega328 (\$5) "Brain"
- Atmega-8 IC (\$1) x4
- Flexible chips, low power

Switch Platforms (Teensy 3.2)

- Faster processor (x4.5)+
- "Simpler"
- \$20 base cost
- Standalone? Power?

Problems

- Improve current platform
 - Interfacing on standalone
 - Power cost?
 - Not "elegant"

Switch Platforms (Teensy 3.2)

- Unfamiliarity
- o Standalone?
- Power cost?
- Hardware cost?
- Platform reusability?
- "Throw away" a lot of progress
- Working from ground-up
- Very high amount of unknowns
- Potential for unfinished project or "stuck" (goals?)

Current Progress

Started on Fritzing tutorials

Figured out tangible goals

Road-mapped a plan

Started learning 3D printing design

Researched parts & costs

Researched alternatives

Questions?